Vitex Diterpenoids: Structural Diversity and Pharmacological Activity

2020 ◽  
Vol 26 (1) ◽  
pp. 138-159 ◽  
Author(s):  
Yanfei Ban ◽  
Tianshuang Xia ◽  
Rui Jing ◽  
Yaoli Guo ◽  
Yiya Geng ◽  
...  

Plants of the genus Vitex (Verbenaceae) are mainly distributed throughout tropical and temperate regions, and many Vitex plants have been traditionally used in folk medicine. Plants of this genus are a rich source of diterpenoids, which not only displayed versatile structural diversity with potential chemotaxonomical significance but also exhibited a wide range of biological activities, mainly including in vitro cytotoxic, antiinflammatory, antimicrobial, hormone level-regulating and antiangiogenic activities. Recently, a series of bioactive diterpenoids, with interesting carbon skeletons, have been reported and gathered considerable interest. This article systematically reviewed diterpenoids isolated from the genus Vitex that appeared in the literature up to December 2018, critically highlighting their structural diversity and pharmacological activities. Up to now, a total of 154 diterpenoids with diverse structures have been isolated and identified from Vitex plants. The authors also summarized the reported structure-activity relationships of those well explored Vitex diterpenoids. Finally, the authors discussed the challenges and potential applications of these diterpenoids in the future.

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5055
Author(s):  
Douglas Kemboi ◽  
Xavier Siwe-Noundou ◽  
Rui W. M. Krause ◽  
Moses K. Langat ◽  
Vuyelwa Jacqueline Tembu

Euphorbia species have a rich history of ethnomedicinal use and ethnopharmacological applications in drug discovery. This is due to the presence of a wide range of diterpenes exhibiting great structural diversity and pharmacological activities. As a result, Euphorbia diterpenes have remained the focus of drug discovery investigations from natural products. The current review documents over 350 diterpenes, isolated from Euphorbia species, their structures, classification, biosynthetic pathways, and their structure–activity relationships for the period covering 2013–2020. Among the isolated diterpenes, over 20 skeletal structures were identified. Lathyrane, jatrophane, ingenane, ingenol, and ingol were identified as the major diterpenes in most Euphorbia species. Most of the isolated diterpenes were evaluated for their cytotoxicity activities, multidrug resistance abilities, and inhibitory activities in vitro, and reported good activities with significant half-inhibitory concentration (IC50) values ranging from 10–50 µM. The lathyranes, isopimaranes, and jatrophanes diterpenes were further found to show potent inhibition of P-glycoprotein, which is known to confer drug resistance abilities in cells leading to decreased cytotoxic effects. Structure–activity relationship (SAR) studies revealed the significance of a free hydroxyl group at position C-3 in enhancing the anticancer and anti-inflammatory activities and the negative effect it has in position C-2. Esterification of this functionality, in selected diterpenes, was found to enhance these activities. Thus, Euphorbia diterpenes offer a valuable source of lead compounds that could be investigated further as potential candidates for drug discovery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junjun Long ◽  
Wentao Ji ◽  
Doudou Zhang ◽  
Yifei Zhu ◽  
Yi Bi

Fusidic acid (FA) is a natural tetracyclic triterpene isolated from fungi, which is clinically used for systemic and local staphylococcal infections, including methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci infections. FA and its derivatives have been shown to possess a wide range of pharmacological activities, including antibacterial, antimalarial, antituberculosis, anticancer, tumor multidrug resistance reversal, anti-inflammation, antifungal, and antiviral activity in vivo and in vitro. The semisynthesis, structural modification and biological activities of FA derivatives have been extensively studied in recent years. This review summarized the biological activities and structure–activity relationship (SAR) of FA in the last two decades. This summary can prove useful information for drug exploration of FA derivatives.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4019
Author(s):  
Douglas Kemboi ◽  
Xolani Peter ◽  
Moses Langat ◽  
Jacqueline Tembu

The genus Euphorbia is one of the largest genera in the spurge family, with diversity in range, distribution, and morphology. The plant species in this genus are widely used in traditional medicine for the treatment of diseases, ranging from respirational infections, body and skin irritations, digestion complaints, inflammatory infections, body pain, microbial illness, snake or scorpion bites, pregnancy, as well as sensory disorders. Their successes have been attributed to the presence of diverse phytochemicals like polycyclic and macrocyclic diterpenes with various pharmacological properties. As a result, Euphorbia diterpenes are of interest to chemists and biochemists with regard to drug discovery from natural products due to their diverse therapeutic applications as well as their great structural diversity. Other chemical constituents such as triterpenoids have also been reported to possess various pharmacological properties, thus supporting the traditional uses of the Euphorbia species. These triterpenoids can provide potential leads that can be developed into pharmaceutical compounds for a wide range of medicinal applications. However, there are scattered scientific reports about the anticancer activities of these constituents. Harnessing such information could provide a database of bioactive pharmacopeia or targeted scaffolds for drug discovery. Therefore, this review presents an updated and comprehensive summary of the ethnomedicinal uses, phytochemistry, and the anticancer activities of the triterpenoids of Euphorbia species. Most of the reported triterpenoids in this review belong to tirucallane, cycloartanes, lupane, oleanane, ursane, and taraxane subclass. Their anticancer activities varied distinctly with the majority of them exhibiting significant cytotoxic and anticancer activities in vitro. It is, therefore, envisaged that the report on Euphorbia triterpenoids with interesting anticancer activities will form a database of potential leads or scaffolds that could be advanced into the clinical trials with regard to drug discovery.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 791 ◽  
Author(s):  
Carla Fernandes ◽  
Maria Carraro ◽  
João Ribeiro ◽  
Joana Araújo ◽  
Maria Tiritan ◽  
...  

Many naturally occurring xanthones are chiral and present a wide range of biological and pharmacological activities. Some of them have been exhaustively studied and subsequently, obtained by synthesis. In order to obtain libraries of compounds for structure activity relationship (SAR) studies as well as to improve the biological activity, new bioactive analogues and derivatives inspired in natural prototypes were synthetized. Bioactive natural xanthones compromise a large structural multiplicity of compounds, including a diversity of chiral derivatives. Thus, recently an exponential interest in synthetic chiral derivatives of xanthones (CDXs) has been witnessed. The synthetic methodologies can afford structures that otherwise could not be reached within the natural products for biological activity and SAR studies. Another reason that justifies this trend is that both enantiomers can be obtained by using appropriate synthetic pathways, allowing the possibility to perform enantioselectivity studies. In this work, a literature review of synthetic CDXs is presented. The structures, the approaches used for their synthesis and the biological activities are described, emphasizing the enantioselectivity studies.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1842 ◽  
Author(s):  
Yue-Xian Jin ◽  
Lei-Ling Shi ◽  
Da-Peng Zhang ◽  
Hong-Yan Wei ◽  
Yuan Si ◽  
...  

Natural daphnane diterpenoids, mainly distributed in plants of the Thymelaeaceae and Euphorbiaceae families, usually include a 5/7/6-tricyclic ring system with poly-hydroxyl groups located at C-3, C-4, C-5, C-9, C-13, C-14, or C-20, while some special types have a characteristic orthoester motif triaxially connectedat C-9, C-13, and C-14. The daphnane-type diterpenoids can be classified into five types: 6-epoxy daphnane diterpenoids, resiniferonoids, genkwanines, 1-alkyldaphnanes and rediocides, based on the oxygen-containing functions at rings B and C, as well as the substitution pattern of ring A. Up to now, nearly 200 daphnane-type diterpenoids have been isolated and elucidated from the Thymelaeaceae and Euphorbiaceae families. In-vitro and in-vivo experiments of these compounds have shown that they possess a wide range of biological activities, including anti-HIV, anti-cancer, anti-leukemic, neurotrophic, pesticidal and cytotoxic effects. A comprehensive account of the structural diversity is given in this review, along with the cytotoxic activities of daphnane-type diterpenoids, up to April 2019.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Alfred Maroyi

Gunnera perpensais the only species of the genusGunnerathat has been recorded in Africa. Its leaves, rhizomes, roots, and stems are reported to possess diverse medicinal properties and used to treat or manage various human and animal diseases and ailments.Gunnera perpensais an ingredient in many herbal concoctions and prescriptions which have been used to induce or augment labour, postnatal medication, to treat parasitic diseases, urinary complaints, kidney problems, general body pains, sexually transmitted infections, and many other diseases. Several classes of phytochemicals including alkaloids, benzoquinones, ellagic acids, flavonoids, phenols, proanthocyanidins, tannins, and minerals have been isolated fromG. perpensa. Scientific studies onG. perpensaindicate that it has a wide range of pharmacological activities including acetylcholinesterase, anthelmintic, antibacterial, antifungal, antinociceptive, anti-inflammatory, antioxidant, antitumour, lactogenic, and uterotonic.Gunnera perpensahas a lot of potential as a possible source of pharmaceutical products for the treatment of a wide range of both human and animal diseases and ailments. Some of the chemical compounds isolated fromG. perpensahave demonstrated various biological activities when investigated inin vitroassays. Future research should focus on the mechanisms of action of the isolated compounds, their efficacy, toxicity, and clinical relevance.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6598
Author(s):  
Yi-Wen Nie ◽  
Yuan Li ◽  
Lan Luo ◽  
Chun-Yan Zhang ◽  
Wei Fan ◽  
...  

There are abundant natural diterpenoids in the plants of the genus Daphne from the Thymelaeaceae family, featuring a 5/7/6-tricyclic ring system and usually with an orthoester group. So far, a total of 135 diterpenoids has been isolated from the species of the genus Daphne, which could be further classified into three main types according to the substitution pattern of ring A and oxygen-containing functions at ring B. A variety of studies have demonstrated that these compounds exert a wide range of bioactivities both in vitro and in vivo including anticancer, anti-inflammatory, anti-HIV, antifertility, neurotrophic, and cholesterol-lowering effects, which is reviewed herein. Meanwhile, the fascinating structure–activity relationship is also concluded in this review in the hope of providing an easy access to available information for the synthesis and optimization of efficient drugs.


2021 ◽  
Vol 11 (12) ◽  
pp. 5702
Author(s):  
Ali Irfan ◽  
Sajjad Ahmad ◽  
Saddam Hussain ◽  
Fozia Batool ◽  
Haseeba Riaz ◽  
...  

Quinoxaline is a privileged pharmacophore that has broad-spectrum applications in the fields of medicine, pharmacology and pharmaceutics. Similarly, the sulfonamide moiety is of considerable interest in medicinal chemistry, as it exhibits a wide range of pharmacological activities. Therefore, the therapeutic potential and biomedical applications of quinoxalines have been enhanced by incorporation of the sulfonamide group into their chemical framework. The present review surveyed the literature on the preparation, biological activities and structure-activity relationship (SAR) of quinoxaline sulfonamide derivatives due to their broad range of biomedical activities, such as diuretic, antibacterial, antifungal, neuropharmacological, antileishmanial, anti-inflammatory, anti-tumor and anticancer action. The current biological diagnostic findings in this literature review suggest that quinoxaline-linked sulfonamide hybrids are capable of being established as lead compounds; modifications on quinoxaline sulfonamide derivatives may give rise to advanced therapeutic agents against a wide variety of diseases.


Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahboob Ali ◽  
Momin Khan ◽  
Khair Zaman ◽  
Abdul Wadood ◽  
Maryam Iqbal ◽  
...  

: Background: The inhibition of α-amylase enzyme is one of the best therapeutic approach for the management of type II diabetes mellitus. Chalcone possesses a wide range of biological activities. Objective: In the current study chalcone derivatives (1-17) were synthesized and evaluated their inhibitory potential against α-amylase enzyme. Method: For that purpose, a library of substituted (E)-1-(naphthalene-2-yl)-3-phenylprop-2-en-1-ones was synthesized by ClaisenSchmidt condensation reaction of 2-acetonaphthanone and substituted aryl benzaldehyde in the presence of base and characterized via different spectroscopic techniques such as EI-MS, HREI-MS, 1H-, and 13C-NMR. Results: Sixteen synthetic chalcones were evaluated for in vitro porcine pancreatic α-amylase inhibition. All the chalcones demonstrated good inhibitory activities in the range of IC50 = 1.25 ± 1.05 to 2.40 ± 0.09 μM as compared to the standard commercial drug acarbose (IC50 = 1.34 ± 0.3 μM). Conclusion: Chalcone derivatives (1-17) were synthesized, characterized, and evaluated for their α-amylase inhibition. SAR revealed that electron donating groups in the phenyl ring have more influence on enzyme inhibition. However, to insight the participation of different substituents in the chalcones on the binding interactions with the α-amylase enzyme, in silico (computer simulation) molecular modeling analyses were carried out.


Sign in / Sign up

Export Citation Format

Share Document