scholarly journals Performance Analysis of Two-Hop mmWave Relay Nodes over the 5G NR Uplink Signal

2021 ◽  
Vol 11 (13) ◽  
pp. 5828
Author(s):  
Randy Verdecia-Peña ◽  
José I. Alonso

In this paper, the uplink in a two-hop 5G new radio co-operative system using Relay Nodes (RNs) in millimeter bands has been simulated and studied. We focus on an uplink Amplify-and-Forward Relay Node (A&F RN) and Decode-and-Forward Relay Node (D&F RN) with an mmWave-band transceiver chain (Tx/Rx). We study two uplink mmWave MIMO D&F relaying protocols assuming, firstly, the complete knowledge of the uplink channel and, secondly, the uplink channel estimation through a Least Square (LS) algorithm. To verify the benefits of the proposed uplink mmWave MIMO co-operative network, a link-level co-operative simulator has been developed using MatlabTM and SimulinkTM software, where an indoor-to-outdoor scenario and mmWave transceiver with off-the shelf components are considered. The main novelty of this link-level co-operative simulator and the implemented relay nodes is the usage of signals with 5G NR features, such as UL-SCH transport channel coding and PUSCH generation, which are the other main contributions of this article. Based on the numerical results in terms of the achievable Bit Error Rate (BER) and throughput, we show that the two-hop uplink co-operative network substantially improves the performance in the communications between the NR-User Equipment (NR-UE) and the logical 5G Radio Node (gNodeB). For example, the results from using uplink mmWave NR-D&F protocols far exceed those achieved with the uplink mmWave NR-A&F algorithm; in the case of the 64-QAM modulation scheme for the SISO technique, an improvement of 6.5 Mbps was achieved using the D&F PCE protocol, taking into account that the 256-QAM constellation is higher by 4.05 Mbps. On the other hand, an average throughput enhancement of 28.77 Mbps was achieved when an uplink mmWave (2 × 4 × 4) D&F PCE strategy was used versus an uplink mmWave SISO D&F LS protocol for a Signal-to-Noise Ratio (SNR) = 20 dB and 64-QAM signal. However, an improvement of 56.42 Mbps was reached when a 256-QAM modulation scheme was employed. Furthermore, this paper introduces the first study to develop an uplink mmWave MIMO 5G co-operative network platform through a Software Defined Radio (SDR) from a practical implementation point of view.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1372
Author(s):  
Randy Verdecia-Peña ◽  
José I. Alonso

Millimeter-Wave (mmWave) bands are receiving enormous attention in 5G mobile communications, due to the capability to provide a multi-gigabit transmission rate. In this paper, a two-hop architecture for 5G communications with the capacity to support high end-to-end performance due to the use of Relay Nodes (RNs) in mmWave-bands is presented. One of the novelties of the paper is the implementation of Amplify-and-Forward (A&F) and Decode-and-Forward (D&F) RNs along with a mmWave-band transceiver chain (Tx/Rx). In addition, two approaches for channel estimation were implemented at the D&F RN for decoding the backhaul link. One of them assumes complete knowledge of the channel (PCE), and the other one performs the channel estimation through Least Square (LS) estimator. A large number of simulations, using MATLABTM and SimulinkTM software, were performed to verify the potential benefits of the proposal two-hop 5G architecture in an outdoor-to-indoor scenario. The main novelty in performing these simulations is the use of signals with 5G features, as DL-SCH transport channel coding, PDSCH generation, and SS Burst generation, which is another of the main contributions of the paper. On the other hand, mmWave transmitter and receiver chains were designed and implemented with off-the shelf components. The simulations show that the two-hop network substantially improves the Key Performance Indicators (KPIs), Bit Error Rate (BER), and Throughput, in the communications between the logical 5G Radio Node (gNodeB), and the New Radio User Equipment (NR-UE). For example, a throughput improvement of 22 Mbps is obtained when a 4 × 4 × 2 MIMO D&F with LS architecture is used versus a SISO D&F with PCE architecture for Signal-to-Noise Ratio (SNR) = 20 dB and 64-QAM signal. This improvement reaches 96 Mbps if a 256-QAM signal is considered. The improvement in BER is 11 dB and 10.5 dB, respectively, for both cases. This work also shows that the obtained results with D&F RNs are better than with A&F RNs. For example, an improvement of 17 Mbps in the use of SISO D&F with LS vs. SISO A&F, for the 64-QAM signal is obtained. Besides, this paper constitutes a first step to the implementation of a mmWave MIMO 5G cooperative network platform.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Xianwen He ◽  
Gaoqi Dou ◽  
Jun Gao

We consider the training design and channel estimation in the amplify-and-forward (AF) diamond relay network. Our strategy is to transmit the source training in time-multiplexing (TM) mode while each relay node superimposes its own relay training over the amplified received data signal without bandwidth expansion. The principal challenge is to obtain accurate channel state information (CSI) of second-hop link due to the multiaccess interference (MAI) and cooperative data interference (CDI). To maintain the orthogonality between data and training, a modified relay-assisted training scheme is proposed to migrate the CDI, where some of the cooperative data at the relay are discarded to accommodate relay training. Meanwhile, a couple of optimal zero-correlation zone (ZCZ) relay-assisted sequences are designed to avoid MAI. At the destination node, the received signals from the two relay nodes are combined to achieve spatial diversity and enhanced data reliability. The simulation results are presented to validate the performance of the proposed schemes.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 937
Author(s):  
Sangku Lee ◽  
Janghyuk Youn ◽  
Bang Chul Jung

For the next generation of manufacturing, the industrial internet of things (IoT) has been considered as a key technology that enables smart factories, in which sensors transfer measured data, actuators are controlled, and systems are connected wirelessly. In particular, the wireless sensor network (WSN) needs to operate with low cost, low power (energy), and narrow spectrum, which are the most technical challenges for industrial IoT networks. In general, a relay-assisted communication network has been known to overcome scarce energy problems, and a spectrum-sharing technique has been considered as a promising technique for the radio spectrum shortage problem. In this paper, we propose a phase steering based hybrid cooperative relaying (PSHCR) technique for the generic relay-assisted spectrum-shared WSN, which consists of a secondary transmitter, multiple secondary relays (SRs), a secondary access point, and multiple primary access points. Basically, SRs in the proposed PSHCR technique operate with decode-and-forward (DF) relaying protocol, but it does not abandon the SRs that failed in decoding at the first hop. Instead, the SRs operate with amplify-and-forward (AF) protocol when they failed in decoding at the first hop. Furthermore, the SRs (regardless of operating with AF or DF protocol) that satisfy interference constraints to the primary network are allowed to transmit a signal to the secondary access point at the second hop. Note that phase distortion is compensated through phase steering operation at each relay node before second-hop transmission, and thus all relay nodes can operate in a fully distributed manner. Finally, we validate that the proposed PSHCR technique significantly outperforms the existing best single relay selection (BSR) technique and cooperative phase steering (CPS) technique in terms of outage performance via extensive computer simulations.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 570
Author(s):  
Randy Verdecia-Peña ◽  
José I. Alonso

The relaying technologies in co-operative systems are considered a core element in actual and future wireless communications, assisting the network by enhancing its reliability and improving its capability through exploiting co-operativity. In this paper, a co-operative system testbed based on Software Defined Radio (SDR) through Universal Software Radio Peripherals (USRPs) and the MATLABTM software is presented. The main novelty in this development of the platform is the implementation of 4G signal features, such as Physical Downlink Shared Channel (PDSCH) and Downlink Shared Channel (DL-SCH) for transport channel coding, which is one of the main contribution of the paper. The developed SDR Multi-Input and Multi-Output (MIMO) co-operative platform is capable of developing prototypes for the Relay Nodes (RNs). More specifically, the Amplify-&-Forward (A&F)—with or without Zero Forcing (ZF) and Mean Maximum Square Error (MMSE) Pre-Equalization—and Decode-&-Forward (D&F) protocols were implemented. Both Single-Input and Single-Output (SISO) and MIMO modes are supported by our testbed. The developed A&F and D&F MIMO co-operative systems in this paper utilize Orthogonal Space-Frequency Block Codes (OSFBCs) for the transmission of data symbols from the source to the destination. Our results show that RNs can substantially improve the Bit Error Rate (BER) and throughput in communications between the eNodeB and User Equipment (UE). In particular, the maximum throughput achieved by conventional MIMO A&F is 9.3Mbps at Signal-to-NoiseRatio(SNR)=16dB, which is 4Mbps higher than throughput of MIMO Non-Co-operative. It also shows the capacity improvement when considering the pre-equalization in the A&F schemes, compared to the conventional A&F RN. For example, with MIMO A&F-MMSE pattern, a value os 11.8 Mbps is achieved for SNR=16dB, which is 84.8% of the maximum system throughput (13.95 Mbps). On the other hand, the obtained results with D&F schemes far exceed those obtained with A&F strategies, achieving the maximum performance with the 2×2 MIMO D&F protocol from SNR=8dB.Furthermore, this work constitutes a first stage to the implementation of a 5G New-Radio Co-operative System platform.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tan N. Nguyen ◽  
Minh Tran ◽  
Phuong T. Tran ◽  
Phu Tran Tin ◽  
Thanh-Long Nguyen ◽  
...  

The energy harvesting amplify-and-forward full-duplex relaying network over the dissimilar fading environments in imperfect CSI condition is investigated. In this system model, the energy, and information are transferred from the source to the relay nodes by the power splitting protocol with helping of the full-duplex relay node. Firstly, the outage probability, achievable throughput, and the optimal power splitting factor in terms of the analytical mathematical expressions were proposed, analyzed, and demonstrated. Furthermore, the system performance of the proposed model on the connection with all system parameters is rigorously studied. Finally, the numerical results demonstrated and convinced one that the analytical and the simulation results are matched well with each other for all system parameter values using Monte-Carlo simulation. The results show that the system performance degrades significantly but is still in a permissible interval while the channel estimation error increases and the system performance of the mixing scenarios is better in comparison with the Rayleigh-Rayleigh scenario.


2015 ◽  
Vol 73 (3) ◽  
Author(s):  
A. A. Shahidan ◽  
N. Fisal ◽  
Nor-Syahidatul N. Ismail ◽  
Farizah Yunus ◽  
Sharifah H. S. Ariffin

Data transportation over resources constraint and noisy channel of wireless sensor network (WSN) is very challenging in term of guaranteeing the data survival along the transmission. However, with the convergence of different research areas such as routing, source and channel coding techniques, the WSN technology has successfully been tremendously developed. This paper proposes an on-the-fly data recovery (ODR) scheme using network coding in order to enhance the robustness of the network against packet loss. Along with the ODR scheme, the packet loss formulation is presented while a network model for a network coding designed is also introduced namely for erasure channel. The data generated by the sources are transferred to the destination through relay nodes via three transmission paths. In ODR process, the lost packet is recovered by a relay node by listening to the transmission of two adjacent nodes and performing the XOR operation on the listened packets. We provide the analytical study on network coding performance and conducting the simulation experiment to verify it. In the simulation studies, we have also compared the performance of the network using network coding with and without packet recovery. The result shows that the number of packet loss has been reduced significantly using the proposed scheme compared to the network with normal network coding.  


2020 ◽  
Vol 19 ◽  

In this paper we consider the deployment of mobile relay nodes in a Cooperative Non Orthogonal Multiple Access (CNOMA) system with variable gain Amplify and Forward relaying. In a multiuser downlink scenario, two users are chosen as the NOMA destination pairs based on the channel quality and another suitable user is chosen to act as the relay node. Two standard relay selection protocols are examined here viz. the partial relay selection (PRS) and optimal relay selection (ORS). An outdated channel condition induced by the user mobility condition is considered in this paper and the impact of channel correlation on the system performance is analyzed. The outage performance and ergodic sum rate capacity of the users is observed under the two relay selection schemes. Further, the impact of user node velocity on the relay selection and outage performance have been reported. It is observed that the optimal relay selection has an overall better performance compared to partial relay selection. However, the impact of user velocity and time delay is lesser in case of partial relay selection. Hence, partial relay selection method has a more stable performance in case of imperfect CSI compared to optimal relay selection.


2022 ◽  
Vol 12 (2) ◽  
pp. 641
Author(s):  
Junsung Choi ◽  
Dongryul Park ◽  
Suil Kim ◽  
Seungyoung Ahn

Along with the development of electromagnetic weapons, Electronic Warfare (EW) has been rising as the future form of war. Especially in the area of wireless communications, high security defense systems such as Low Probability of Detection (LPD), Low Probability of Interception (LPI), and Low Probability of Exploitation (LPE) communication algorithms are being studied to prevent military force loss. One LPD, LPI, and LPE communication algorithm, physical-layer security, has been discussed and studied. We propose a noise signaling system, a type of physical-layer security, which modifies conventionally modulated I/Q data into a noise-like shape. To suggest the possibility of realistic implementation, we use Software-Defined Radio (SDR). Since there are certain hardware limitations, we present the limitations, requirements, and preferences of practical implementation of the noise signaling system. The proposed system uses ring-shaped signaling, and we present a ring-shaped signaling system algorithm, SDR implementation methodology, and performance evaluations of the system using the metrics of Bit Error Rate (BER) and Probability of Modulation Identification (PMI), which we obtain by using a Convolutional Neural Network (CNN) algorithm. We conclude that the ring-shaped signaling system can perform high LPI/LPE communication functioning because an eavesdropper cannot obtain the correct modulation scheme information. However, the performance can vary with the configurations of the I/Q data-modifying factors.


GEOMATIKA ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 107
Author(s):  
Leni Sophia Heliani ◽  
Cecep Pratama ◽  
Parseno Parseno ◽  
Nurrohmat Widjajanti ◽  
Dwi Lestari

<p><em>Sangihe-Moluccas region is the most active seismicity in Indonesia. Between 2015 to 2018 there is four M6 class earthquake occurred close to the Sangihe-Moluccas region. These seismic active regions representing active deformation which is recorded on installed GPS for both campaign and continuous station. However, the origin of those frequent earthquakes has not been well understood especially related to GPS-derived secular motion. Therefore, we intend to estimate the secular motion inside and around Sangihe island. On the other hand, we also evaluate the effect of seismicity on GPS sites. Since our GPS data were conducted on yearly basis, we used an empirical global model of surface displacement due to coseismic activity. We calculate the offset that may be contained in the GPS site during its period</em><em>. </em><em>We remove the offset and estimate again the secular motion using linear least square. Hence, in comparison with the secular motion without considering the seismicity, we observe small change but systematically shifting the motion. We concluded the seismicity in the Molucca sea from 2015 to 2018 systematically change the secular motion around Sangihe Island at the sub-mm level. Finally, we obtained the secular motion toward each other between the east and west side within 1 to 5.5 cm/year displacement. </em></p>


Sign in / Sign up

Export Citation Format

Share Document