scholarly journals Experimental Analysis of Water Pressure and Temperature Influence on Atomization and Evolution of a Port Water Injection Spray

2021 ◽  
Vol 11 (13) ◽  
pp. 5980
Author(s):  
Lucio Postrioti ◽  
Gabriele Brizi ◽  
Gian Marco Finori

Port water injection (PWI) is considered one of the most promising technologies to actively control the increased knock tendency of modern gasoline direct injection (GDI) engines, which are rapidly evolving with the adoption of high compression ratios and increased brake mean effective pressure levels in the effort to improve their thermal efficiency. For PWI technology, appropriately matching the spray evolution and the intake system design along with obtaining a high spray atomization quality, are crucial tasks for promoting water evaporation so as to effectively cool down the air charge with moderate water consumption and lubricant dilution drawbacks. In the present paper, a detailed experimental analysis of a low-pressure water spray is presented, covering a lack of experimental data on automotive PWI systems. Phase doppler anemometry and fast-shutter spray imaging allowed us to investigate the influence exerted by the injection pressure level and by the water temperature on spray drop size and global shape, obtaining a complete database to be used for the optimization of PWI systems. The obtained results evidence how significant benefits in terms of atomization quality can be obtained by adopting injection pressure and water temperature levels compliant with standard low injection pressure technologies.

2019 ◽  
Vol 21 (8) ◽  
pp. 1520-1540 ◽  
Author(s):  
Ankit A Raut ◽  
J M Mallikarjuna

In-cylinder water injection is a promising approach for reducing NOx and soot emissions from internal combustion engines. It allows one to use a higher compression ratio by reducing engine knock; hence, higher fuel economy and power output can be achieved. However, water injection can also affect engine combustion and emission characteristics if water injection and injector parameters are not properly set. Majority of the previous studies on the water injection are done through experiments. Therefore, subtle aspects of water injection such as in-cylinder interaction of water sprays, spatial distribution of water vapor, and effect on flame propagation are not clearly understood and rarely reported in literature due to experimental limitations. Thus, in the present article, a computational fluid dynamics investigation is carried out to analyze the effects of direct water injection under various injector configurations on water evaporation, combustion, performance, and emission characteristics of a gasoline direct injection engine. The emphasis is given to analyze in-cylinder water spray interactions, flame propagation, water spray droplet size distribution, and water vapor spatial distribution inside the engine cylinder. For the study, the water-to-fuel ratio is varied from 0 to 1. Various water injector configurations using nozzle hole diameters of 0.14, 0.179, and 0.205 mm, along with nozzle holes of 4, 5, 6, and 7, are considered for comparison in addition to the case of no_water. Computational fluid dynamics models used in this study are validated with the available data in literature. From the results, it is found that the emission and performance characteristics of the engine are highly dependent on water evaporation characteristics. Also, the water-to-fuel ratio of 0.6 with 6 number of nozzle holes and the nozzle diameter of 0.14 mm results in the highest indicated mean effective pressure and the lowest NOx, soot, and CO emissions compared to other cases considered.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Nikhil Sharma ◽  
Avinash Kumar Agarwal

Abstract Fuel availability, global warming, and energy security are the three main driving forces, which determine suitability and long-term implementation potential of a renewable fuel for internal combustion engines for a variety of applications. Comprehensive engine experiments were conducted in a single-cylinder gasoline direct injection (GDI) engine prototype having a compression ratio of 10.5, for gaining insights into application of mixtures of gasoline and primary alcohols. Performance, emissions, combustion, and particulate characteristics were determined at different engine speeds (1500, 2000, 2500, 3000 rpm), different fuel injection pressures (FIP: 40, 80, 120, 160 bars) and different test fuel blends namely 15% (v/v) butanol, ethanol, and methanol blended with gasoline, respectively (Bu15, E15, and M15) and baseline gasoline at a fixed (optimum) spark timing of 24 deg before top dead center (bTDC). For a majority of operating conditions, gasohols exhibited superior characteristics except minor engine performance penalty. Gasohols therefore emerged as serious candidate as a transitional renewable fuel for utilization in the existing GDI engines, without requirement of any major hardware changes.


Author(s):  
Ratnak Sok ◽  
Jin Kusaka

Abstract Injected gasoline into the O2-depleted environment in the recompression stroke can be converted into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reaction. These reformate species influence the combustion phenomena of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, a production-based single-cylinder research engine was boosted to reach IMEPn = 0.55 MPa in which its indicated efficiency peaks at 40–41%. Experimentally, the main combustion phases are advanced under single-pulse direct fuel injection into the negative valve overlap (NVO) compared with that of the intake stroke. NVO peak in-cylinder pressures are lower than that of motoring, which emphasizes that endothermic reaction occurs during the interval. Low O2 concentration could play a role in this evaporative charge cooling effect. This phenomenon limits the oxidation reaction, and the thermal effect is not pronounced. For understanding the recompression reaction phenomena, 0D simulation with three different chemical reaction mechanisms is studied to clarify that influences of direct injection timing in NVO on combustion advancements are kinetically limited by reforming. The 0D results show the same increasing tendencies of classical reformed species of rich-mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. By combining these reformed species into the main fuel-air mixture, predicted ignition delays are shortened. The effects of the reformed species on the main combustion are confirmed by 3D-CFD calculation, and the results show that OH radical generation is advanced under NVO fuel injection compared with that of intake stroke conditions thus earlier heat release and cylinder pressure are noticeable. Also, parametric studies on injection pressure and double-pulse injections on engine combustion are performed experimentally.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 857 ◽  
Author(s):  
Liang Lu ◽  
Qilong Xue ◽  
Manyi Zhang ◽  
Liangliang Liu ◽  
Zhongyu Wu

The injection pressure of the gasoline direct injection vehicle is currently developing from the low pressure to the high pressure, and the increase of the injection pressure has brought various damage problems to the high pressure pump structure. These problems should be solved urgently. In this paper, the damage problem of the high pressure pump unloading valve ball in a gasoline direct injection vehicle under high pressure conditions is studied. The theoretical calculation of the force of the pressure relief valve is carried out. Firstly, the equivalent friction coefficient is obtained by decoupling analysis of the statically indeterminate model. Based on this, a finite element model is established. The equivalent stress is obtained by numerical simulation. The equivalent stress is compared with the yield strength of the valve ball material to determine that the valve ball damage is a non-static damage. At the same time, the s-N curve of the probability of destruction of one-millionth of the material of the valve ball is given. Then, the fatigue numerical simulation is performed. A safety factor of 3.66 is obtained. In summary, the high pressure relief valve ball in the direct injection high pressure pump should not be a traditional structural damage under high pressure conditions. In the theoretical calculation, the tangential displacement and radial displacement of the ball are all on the micrometer level. It can be presumed that the surface damage of the valve ball is microscopic damage, such as fretting wear.


2017 ◽  
Vol 19 (3) ◽  
pp. 347-359 ◽  
Author(s):  
Felix Leach ◽  
Richard Stone ◽  
Dave Richardson ◽  
Andrew Lewis ◽  
Sam Akehurst ◽  
...  

Downsized, highly boosted, gasoline direct injection engines are becoming the preferred gasoline engine technology to ensure that increasingly stringent fuel economy and emissions legislation are met. The Ultraboost project engine is a 2.0-L in-line four-cylinder prototype engine, designed to have the same performance as a 5.0-L V8 naturally aspirated engine but with reduced fuel consumption. It is important to examine particle number emissions from such extremely highly boosted engines to ensure that they are capable of meeting current and future emissions legislation. The effect of such high boosting on particle number emissions is reported in this article for a variety of operating points and engine operating parameters. The effect of engine load, air–fuel ratio, fuel injection pressure, fuel injection timing, ignition timing, inlet air temperature, exhaust gas recirculation level, and exhaust back pressure has been investigated. It is shown that particle number emissions increase with increase in cooled, external exhaust gas recirculation and engine load, and decrease with increase in fuel injection pressure and inlet air temperature. Particle number emissions are shown to fall with increased exhaust back pressure, a key parameter for highly boosted engines. The effects of these parameters on the particle size distributions from the engine have also been evaluated. Significant changes to the particle size spectrum emitted from the engine are seen depending on the engine operating point. Operating points with a bias towards very small particle sizes were noted.


Author(s):  
Xiang Li ◽  
Yi-qiang Pei ◽  
Jing Qin ◽  
Dan Zhang ◽  
Kun Wang ◽  
...  

This research systematically studied the effect of injection pressure on macroscopic spray characteristics of a five-hole gasoline direct injection (GDI) injector fueled with ethanol, especially under ultra-high injection pressure up to 50 MPa. The front and side views of sprays were photographed by the schlieren method using a high-speed camera. Various parameters, including spray development stages, cone angle, penetration, area and irregular ratio, were fully analyzed to evaluate macroscopic characteristics of the whole spray and spray core with varying injection pressure. The results demonstrated that the effect of ultra-high injection pressure on macroscopic spray characteristics was significant. As injection pressure increased from 10 MPa to 50 MPa, the occurrence time of branch-like structure decreased; the cone angle increased little; the area increased significantly; the area ratio dropped by 6.4 and 5.8 percentage points on average for the front view and side view spray, respectively. There was a significant increase in the trend for penetration as the injection pressure rose from 10 MPa to 30 MPa. However, this trend became weak when the injection pressure further increased. The penetration ratio under ultra-high injection pressure was slightly higher than it was under 10 or 20 MPa. Ultra-high injection pressure would not obviously raise the possibility of spray/wall impingement, but led to the impingement quantity increasing to some extent. Increasing injection pressure could enhance the vortex scale, finally resulting in better air/fuel mixing quality. Ultra-high injection pressure was a potential way to improve air/fuel mixture homogeneity for a GDI injector fueled with ethanol.


Author(s):  
Zhang Ming ◽  
Zhong Jun ◽  
Capelli Stefano ◽  
Lubrano Luigi

The development process of a down-sized turbocharged gasoline direct-injection (GDI) engine/vehicle was partially introduced with the focus on particulate matter (PM)/particle number (PN) emission reduction. To achieve this goal, the injection system was upgraded to obtain higher injection pressure. Two types of prototype injectors were designed and compared under critical test conditions. Combined numerical and experimental analysis was made to select the right injector in terms of particle emission. With the selected injector, the effect of injection parameters calibration (injection pressure, start of injection (SOI) timing, number of injection pulses, etc.) on PM/PN emission was illustrated. The number of fuel injection pulses, SOI timing, and injection pressure were found playing the leading role in terms of the particle emission suppression. With single-injection strategy, the injection pressure and SOI timing were found to be a dominant factor to reduce particle emission in warm-up condition and cold condition, respectively; a fine combination of injection timing and injection pressure is generally able to decrease up to 50% of PM emission in a wide range of the engine map. While with multiple injection, up to an order of magnitude PM emission reduction can be achieved. Several New European Driving Cycle (NEDC) emission cycles were arranged on a demo vehicle to evaluate the effect of the injection system upgrade and adjusted calibration. This work will provide a guide for the emission control of GDI engines/vehicles fulfilling future emission legislation.


2016 ◽  
Vol 9 (3) ◽  
pp. 199-211 ◽  
Author(s):  
Yudaya Sivathanu ◽  
Jongmook Lim ◽  
Varun Kulkarni

Finely atomized sprays from multi-hole gasoline direct injection (GDI) fuel injectors make them an ideal choice for automobile applications. A knowledge of the factors affecting the performance of these injectors is hence important. In the study presented here, we employ statistical extinction tomography to examine the transient characteristics of two GDI fuel injectors with five and six holes. Two axial locations, 25 mm and 35 mm from the injector exit, are chosen for experimental measurements, and the dependence of injection pressure and ambient temperature on plume locations and angles is examined from these measurements. A pressure chamber with opposing windows is used which permits the nozzle to be rotated 12 times (30° each rotation) to obtain information on the complete spray structure. Additionally, the plume centroid locations are measured and compared with those obtained with a mechanical patternator. The centroid locations from the two instruments compare favorably.


Sign in / Sign up

Export Citation Format

Share Document