scholarly journals Comparative Study of Energy Savings for Various Control Strategies in the Tunnel Lighting System

2021 ◽  
Vol 11 (14) ◽  
pp. 6372
Author(s):  
Li Qin ◽  
Antonio Peña-García ◽  
Arturo S. Leon ◽  
Jian-Cheng Yu

Tunnel lighting is the most significant component in total energy consumption in the whole infrastructure. Hence, various lighting control strategies based on light-emitting diode (LED) technology have been investigated to conserve energy by decreasing luminaires’ operating time. In this study, four kinds of tunnel lighting control strategies and the development of their associated technologies are evaluated: no-control low-consumption lamps (LCL), time-scheduling control strategy (TSCS), daylight adaptation control strategy (DACS), and intelligent control strategy (ICS). This work investigates the relationship between initial investment and electrical costs as a function of tunnel length (L) and daily traffic volume (N) for the four control strategies. The analysis was performed using 100-day data collected in eleven Chinese tunnels. The tunnel length (L) ranged from 600 m to 3300 m and the daily traffic volume (N) ranged from 700 to 2500. The results showed that initial investment costs increase with L for all control strategies. Also, the electricity costs for the LCL, TSCS, and DACS strategies increased linearly with L, whereas the electricity cost for the ICS strategy has an exponential growth with L and N. The results showed that for a lifetime equal to or shorter than 218 days, the LCL strategy offered the best economical solution; whereas for a lifetime longer than 955 days, the ICS strategy offered the best economical solution. For a lifetime between 218 and 955 days, the most suitable strategy varies with tunnel length and traffic volume. This study’s results can guide the decision-making process during the tunnel lighting system’s design stage.

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Gianluca Serale ◽  
Luca Gnoli ◽  
Emanuele Giraudo ◽  
Enrico Fabrizio

Artificial lighting systems are used in commercial greenhouses to ensure year-round yields. Current Light Emitting Diode (LED) technologies improved the system efficiency. Nevertheless, having artificial lighting systems extended for hectares with power densities over 50W/m2 causes energy and power demand of greenhouses to be really significant. The present paper introduces an innovative supervisory and predictive control strategy to optimize the energy performance of the artificial lights of greenhouses. The controller has been implemented in a multi-span plastic greenhouse located in North Italy. The proposed control strategy has been tested on a greenhouse of 1 hectare with a lighting system with a nominal power density of 50 Wm−2 requiring an overall power supply of 1 MW for a period of 80 days. The results have been compared with the data coming from another greenhouse of 1 hectare in the same conditions implementing a state-of-the-art strategy for artificial lighting control. Results outlines that potential 19.4% cost savings are achievable. Moreover, the algorithm can be used to transform the greenhouse in a viable source of energy flexibility for grid reliability.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3852
Author(s):  
Daniel Plörer ◽  
Sascha Hammes ◽  
Martin Hauer ◽  
Vincent van Karsbergen ◽  
Rainer Pfluger

A significant proportion of the total energy consumption in office buildings is attributable to lighting. Enhancements in energy efficiency are currently achieved through strategies to reduce artificial lighting by intelligent daylight utilization. Control strategies in the field of daylighting and artificial lighting are mostly rule-based and focus either on comfort aspects or energy objectives. This paper aims to provide an overview of published scientific literature on enhanced control strategies, in which new control approaches are critically analysed regarding the fulfilment of energy efficiency targets and comfort criteria simultaneously. For this purpose, subject-specific review articles from the period between 2015 and 2020 and their research sources from as far back as 1978 are analysed. Results show clearly that building controls increasingly need to address multiple trades to achieve a maximum improvement in user comfort and energy efficiency. User acceptance can be highlighted as a decisive factor in achieving targeted system efficiencies, which are highly determined by the ability of active user interaction in the automatic control system. The future trend is moving towards decentralized control concepts including appropriate occupancy detection and space zoning. Simulation-based controls and learning systems are identified as appropriate methods that can play a decisive role in reducing building energy demand through integral control concepts.


Author(s):  
Carla Benea ◽  
Laura Rendon ◽  
Jesse Papenburg ◽  
Charles Frenette ◽  
Ahmed Imacoudene ◽  
...  

Abstract Objective: Evidence-based infection control strategies are needed for healthcare workers (HCWs) following high-risk exposure to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). In this study, we evaluated the negative predictive value (NPV) of a home-based 7-day infection control strategy. Methods: HCWs advised by their infection control or occupational health officer to self-isolate due to a high-risk SARS-CoV-2 exposure were enrolled between May and October 2020. The strategy consisted of symptom-triggered nasopharyngeal SARS-CoV-2 RNA testing from day 0 to day 7 after exposure and standardized home-based nasopharyngeal swab and saliva testing on day 7. The NPV of this strategy was calculated for (1) clinical coronavirus disease 2019 (COVID-19) diagnosis from day 8–14 after exposure, and for (2) asymptomatic SARS-CoV-2 detected by standardized nasopharyngeal swab and saliva specimens collected at days 9, 10, and 14 after exposure. Interim results are reported in the context of a second wave threatening this essential workforce. Results: Among 30 HCWs enrolled, the mean age was 31 years (SD, ±9), and 24 (80%) were female. Moreover, 3 were diagnosed with COVID-19 by day 14 after exposure (secondary attack rate, 10.0%), and all cases were detected using the 7-day infection control strategy: the NPV for subsequent clinical COVID-19 or asymptomatic SARS-CoV-2 detection by day 14 was 100.0% (95% CI, 93.1%–100.0%). Conclusions: Among HCWs with high-risk exposure to SARS-CoV-2, a home-based 7-day infection control strategy may have a high NPV for subsequent COVID-19 and asymptomatic SARS-CoV-2 detection. Ongoing data collection and data sharing are needed to improve the precision of the estimated NPV, and here we report interim results to inform infection control strategies in light of a second wave threatening this essential workforce.


Author(s):  
Young Joo Shin ◽  
Peter H. Meckl

Benchmark problems have been used to evaluate the performance of a variety of robust control design methodologies by many control engineers over the past 2 decades. A benchmark is a simple but meaningful problem to highlight the advantages and disadvantages of different control strategies. This paper verifies the performance of a new control strategy, which is called combined feedforward and feedback control with shaped input (CFFS), through a benchmark problem applied to a two-mass-spring system. CFFS, which consists of feedback and feedforward controllers and shaped input, can achieve high performance with a simple controller design. This control strategy has several unique characteristics. First, the shaped input is designed to extract energy from the flexible modes, which means that a simpler feedback control design based on a rigid-body model can be used. In addition, only a single frequency must be attenuated to reduce residual vibration of both masses. Second, only the dynamics between control force and the first mass need to be considered in designing both feedback and feedforward controllers. The proposed control strategy is applied to a benchmark problem and its performance is compared with that obtained using two alternative control strategies.


2014 ◽  
Vol 525 ◽  
pp. 646-652
Author(s):  
Min Bian ◽  
Qing Yun Guo

The robust H2/<em>H</em>∞ control strategy for a class of linear continuous-time uncertain systems with randomly jumping parameters is investigated. The transition of the jumping parameters is decided by a finite-state Markov process. The uncertainties are supposed to be norm-bounded. It is desired to design a linear state feedback control strategies such that the closed-loop system satisfies H performance and minimizes the H2 norm of the system. A sufficient condition is first established on the existence of the robust H2/<em>H</em>∞controller bases on the bounded real lemma. Then the corresponding state-feedback law is given in terms of a set of linear matrix inequalities (LMIs). It is showed that this condition is equivalent to the feasible solutions problem of LMI. Furthermore, the control strategy design problem is converted into a convex optimization problem subject to LMI constraints, which can be easily solved by standard numerical software.


2007 ◽  
Vol 131-133 ◽  
pp. 595-600
Author(s):  
S. Prucnal ◽  
L. Rebohle ◽  
Wolfgang Skorupa

The temperature quenching mechanisms of the electroluminescence (EL) and the reactivation of the rare earth luminescent centres by the flash lamp annealing (FLA) made after hot electron injection into the SiO2 layer implanted by Tb and Gd was investigated. An increase of the temperature from room temperature up to 150oC reduces the gate voltage of about 3 V and increases the rate of the EL quenching process and the degradation of the Metal-Oxide-Silicon Light Emitting Diode (MOSLED) structure by a of factor of three. On the other hand, the post-injection FLA reactivates the RE centres switched off by electrons trapped around them during hot electron impact excitation, increasing the operating time of the MOSLEDs devices.


2014 ◽  
Vol 909 ◽  
pp. 317-322
Author(s):  
Huan Pao Huang ◽  
Ji An Yu ◽  
Qian Su ◽  
Lei Wang

2 × 660MW ultra-supercritical units of O'Brien Power Plant are single configuration of auxiliary pilot project, due to the higher its parameters and performance requirements, it need better control strategies to ensure safe and economical operation. Against traditional cascade PID main steam’s temperature control system delaying large, this article proposed control strategy based on Smith estimated. Main steam’s temperature controlled object inert zone mathematical model can be showed by multi-volume model, and use the improved system for large inertia Smith Predictor to make dynamic parameter control systems improvements. Simulation results of the simulation machine show that: Optimization emperor steam temperature control is in an adjustable range and the policy in separate auxiliary units is feasible.


2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


2021 ◽  
Vol 25 (5) ◽  
Author(s):  
Jeanne Moldenhauer

Warning letters and regulatory inspection observation reports (e.g., FDA 483) often provide useful information for assessing risks in your facility and preparing for upcoming inspections. Starting with the updates to the European Union’s Annex 1 for the Manufacture of Sterile Drugs there has been an increased focus on contamination control strategies in facilities. A contamination control strategy is an integral part of pharmaceutical manufacturing, whether sterile or non-sterile. For this article we are going to look at a series of observations for a vaccine production facility and how we might learn from these observations. Highlighted are some of the contamination control issues. The FDA 483 Report was published in redacted form.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vikash Gurugubelli ◽  
Arnab Ghosh

Purpose The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power balance is very difficult. The purpose of this paper is to control the inverters in microgrid using different control strategies to maintain the system stability and power balance. Design/methodology/approach In this paper, different control strategies are implemented to the voltage source converter (VSC) to get the desired performance. The DQ control is a basic control strategy that is inherently present in the droop and virtual synchronous machine (VSM) control strategies. The droop and VSM control strategies are inspired by the conventional synchronous machine (SM). The main objective of this work is to design and implement the three aforementioned control strategies in microgrid. Findings The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy. Research limitations/implications In the power system, the power electronic-based power allowed by VSM is dominated by the conventional power which is generated from the traditional SM, and then the issues related to stability still need advance study. There are some differences between the SM and VSM characteristics, so the integration of VSM with the existing system still needs further study. Economical operation of VSM with hybrid storage is also one of the future scopes of this work. Originality/value The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.


Sign in / Sign up

Export Citation Format

Share Document