scholarly journals Effects of Different Freezing Methods on Water Distribution, Microstructure and Protein Properties of Cuttlefish during the Frozen Storage

2021 ◽  
Vol 11 (15) ◽  
pp. 6866
Author(s):  
Ying Lv ◽  
Yuanming Chu ◽  
Pengcheng Zhou ◽  
Jun Mei ◽  
Jing Xie

To study the effect of different freezing methods on the quality changes of cuttlefish during the frozen storage of cuttlefish, fresh cuttlefish was treated with six freezing methods (refrigerator direct-freezing, saline solution impregnation freezing, flat freezing, tunnel type continuous freezing, air-blast freezing and liquid nitrogen freezing) and then stored at −18 °C for 90 days. The time to pass the maximum ice crystal generation zone for the above six freezing methods in this experiment was 165.5, 67.5, 34.5, 21.8, 20.4 and 1.5 min, respectively. In this study, water retention (thawing loss rate, centrifugal loss rate, and cooking loss), pH, malondialdehyde content, TVB-N value, and sulfhydryl content were measured to evaluate the quality after thawing. Protein secondary structure was measured by attenuated total reflection infrared spectroscopy (ATR-FTIR), water migration was determined by low-field NMR, and muscle microstructure was observed by scanning electron microscopy. The results showed that among the six freezing methods, liquid nitrogen freezing took the shortest time to pass through the maximum ice crystal generation zone. And it had the highest water retention, the lowest TVB-N content, the highest sulfhydryl content and the least irregular curling of protein secondary structure after 90 days of frozen storage. However, liquid nitrogen freezing can cause cracks and breakage in cuttlefish due to cryogenic fracture caused by ultra-low temperature, which affects its sensory evaluation. Although the freezing speed of flat freezing is faster than refrigerator direct-freezing and saline solution impregnation freezing, the muscle is extruded and deformed during the freezing process, and the damage is more serious, and the frozen storage quality is the worst. The comprehensive analysis results showed that the freezing speed of air- blast freezing was faster and the quality of cuttlefish in the freezing process was better, which was the more recommended freezing method, and this study provided some theoretical basis for the selection of freezing method in the actual production of cuttlefish.

1990 ◽  
Vol 36 (5) ◽  
pp. 783-788 ◽  
Author(s):  
M N Nanjee ◽  
N E Miller

Abstract The concentration of high-density lipoprotein cholesterol (HDL-C) in plasma is now established as an independent risk factor for coronary heart disease, but more data are needed on the relative risk-predictive powers of different HDL subclasses. For epidemiologic and clinical purposes, isolation of HDL from other lipoproteins and separation of its two major subclasses, HDL2 and HDL3, are performed most conveniently by precipitation. Although storage of plasma is commonly necessary, little information is available on the long-term stability of HDL subclasses at different temperatures. Therefore, we quantified HDL-C, HDL2-C, and HDL3-C by dual precipitation with heparin-MnCl2/15-kDa dextran sulfate (H-M/DS) in samples of EDTA-plasma from 93 healthy subjects, after storage for one to 433 days at -20 degrees C, at -70 degrees C, or in liquid nitrogen (-196 degrees C). Fourteen samples (15%) were stored for a year or longer. At -20 degrees C, HDL-C decreased by 4.8% per year and HDL3-C decreased by 6.9% per year (P = 0.002 for both variables) relative to results obtained with samples stored in liquid nitrogen; total cholesterol, HDL2-C, and triglyceride did not change significantly at this temperature. When stored at -70 degrees C, none of the lipids showed any change relative to results obtained with liquid nitrogen. Thus, long-term storage of EDTA-plasma at -20 degrees C is unsuitable for subsequent quantification of HDL-C and its subclasses by H-M/DS dual precipitation. Storage at -70 degrees C is preferable, and is as reliable as storage in liquid nitrogen.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1777
Author(s):  
Shaghayegh Haghani ◽  
Milad Hadidi ◽  
Shiva Pouramin ◽  
Fateme Adinepour ◽  
Zahra Hasiri ◽  
...  

In this study, cornelian cherry (Cornus mas L.) peel (CCP) was incorporated into a probiotic ice cream formulation containing Bifidobacterium lactis to investigate the potential effect of CCP on the viability of B. lactis in the ice cream after simulated gastrointestinal stress and during 120 days of storage. Furthermore, the effect of the addition of CCP (3, 6, and 9%) on bioactive compounds, antioxidant activity, and physicochemical and sensory attributes of the ice cream was evaluated. The results showed that the addition of CCP significantly enhanced vitamin C, total polyphenols, total anthocyanin content, and antioxidant activity of the ice cream. During frozen storage of the ice cream, phenolic compounds and anthocyanins were quite stable, but vitamin C significantly decreased. The addition of CCP had no significant effect on the viability of B. lactis throughout the freezing process, but increments of 6% and 9% CCP increased the viability of B. lactis in the ice cream and after simulated gastrointestinal processes in all storage periods. These findings imply that CCP is a promising candidate to be used for producing functional ice cream.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Hidas Karina Ilona ◽  
Ildikó Csilla Nyulas-Zeke ◽  
László Friedrich ◽  
Anna Visy ◽  
Judit Csonka ◽  
...  

Eggs are widely utilized because of their high nutrient value, coagulating, foaming, emulsifying and sometimes even colouring or flavouring facilities in food manufacturing. Production of processed egg products shows an increasing trend. Frozen products belong to first processing, their shelf life can increase up to 1 year. By freezing, a large reduction in microbial loss can be achieved. But different undesirable processes can occur. The effect of freezing on animal cells is highly dependent on freezing parameters. It has a different effect on egg subtituents. Egg yolk undergoes a gelation process while proteins can denaturate. In our study pasteurized liquid egg products (liquid egg white, liquid egg yolk and liquid whole egg) were frozen by dripping into liquid nitrogen. After that, a 14-day frozen storage experiment was carried out at -18°C. Before freezing and on the 1th, 7th and 14th days of storage experiment pH, dry matter content, colour and calorimetric properties (denaturation temperatures and enthalpy of denaturation) with differential scanning calorimetry were tested. For statistical analysis, one-way ANOVA (α = 0.05) was employed. In our experiment, we found no significant change in calorimetric properties of liquid egg white after freezing, but significant decreasing of enthalpy and denaturation temperatures of liquid egg yolk and liquid whole egg was identified. In contrast, frozen storage had a decreasing effect in all these products. Freezing caused a clearly visible colour change in LEW, a visible change in colour of LWE and a very clearly visible change in colour of LEY. In case of LEW and LEY changes increased to clearly visible 14 days. In conclusion, our results show that frozen storage had a greater effect on liquid egg products properties than freezing in liquid nitrogen.


1987 ◽  
Vol 70 (1) ◽  
pp. 22-23
Author(s):  
Paul Muneta ◽  
Richard Jasman ◽  
Luanne M Reid

Abstract The effects of freezing on nitrite stability in microbial cultures and in other liquid media were examined. Nitrite (12-13 mg (NO2)N/ 100 mL, pH 5.7) in culture and aqueous media was very unstable during frozen storage. Freezing resulted in the degradation of nitrite to other products including nitrate. Losses of 38-57% of the nitrite occurred after 15 days of frozen storage. Neither addition of chloroform nor a 5 min boiling treatment before freezing prevented nitrite destruction. However, nitrite concentration in the unfrozen portion of aqueous media increased during the freezing process. Nitrite can be stabilized during frozen storage by increasing the pH to near 11.0. For aqueous solutions, nitrite can be preserved by the use of chloroform or by increasing the pH to 11.0 and storing at 5°C.


2013 ◽  
Vol 54 (1) ◽  
pp. 772-780 ◽  
Author(s):  
Mónica Bueno ◽  
Virginia C. Resconi ◽  
M. Mar Campo ◽  
Juan Cacho ◽  
Vicente Ferreira ◽  
...  

2009 ◽  
Vol 72 (1) ◽  
pp. 174-177 ◽  
Author(s):  
CHENGCHU LIU ◽  
JIANZHANG LU ◽  
YI-CHENG SU

This study investigated the effects of flash freezing, followed by frozen storage, on reducing Vibrio parahaemolyticus in Pacific raw oysters. Raw Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus at a total level of approximately 3.5 × 105 most probable number (MPN) per gram. Inoculated oysters were subjected to an ultralow flash-freezing process (−95.5°C for 12 min) and stored at −10, −20, and −30°C for 6 months. Populations of V. parahaemolyticus in the oysters declined slightly by 0.22 log MPN/g after the freezing process. Subsequent storage of frozen oysters at −10, −20, and −30°C resulted in considerable reductions of V. parahaemolyticus in the oysters. Storing oysters at −10°C was more effective in inactivating V. parahaemolyticus than was storage at −20 or −30°C. Populations of V. parahaemolyticus in the oysters declined by 2.45, 1.71, and 1.45 log MPN/g after 1 month of storage at −10, −20, and −30°C, respectively, and continued to decline during the storage. The levels of V. parahaemolyticus in oysters were reduced by 4.55, 4.13, and 2.53 log MPN/g after 6 months of storage at −10, −20, and −30°C, respectively. Three process validations, each separated by 1 week and conducted according to the National Shellfish Sanitation Program's postharvest processing validation–verification interim guidance for Vibrio vulnificus and Vibrio parahaemolyticus, confirmed that a process of flash freezing, followed by storage at −21 ± 2°C for 5 months, was capable of achieving greater than 3.52-log (MPN/g) reductions of V. parahaemolyticus in half-shell Pacific oysters.


Meat Science ◽  
2010 ◽  
Vol 84 (4) ◽  
pp. 662-669 ◽  
Author(s):  
E. Muela ◽  
C. Sañudo ◽  
M.M. Campo ◽  
I. Medel ◽  
J.A. Beltrán

Sign in / Sign up

Export Citation Format

Share Document