scholarly journals Three-Dimensional Broadband and Isotropic Double-Mesh Twin-Wire Media for Meta-Lenses

2021 ◽  
Vol 11 (15) ◽  
pp. 7153
Author(s):  
Hairu Wang ◽  
Qiao Chen ◽  
Oskar Zetterstrom ◽  
Oscar Quevedo-Teruel

Lenses are used for multiple applications, including communications, surveillance and security, and medical instruments. In homogeneous lenses, the contour is used to control the electromagnetic propagation. Differently, graded-index lenses make use of inhomogeneous materials, which is an extra degree of freedom. This extra degree of freedom enables the design of devices with a high performance. For instance, rotationally symmetric lenses without spherical aberrations, e.g., the Luneburg lens, can be designed. However, the manufacturing of such lenses is more complex. One possible approach to implement these lenses is using metamaterials, which are able to produce equivalent refractive indices. Here, we propose a new type of three-dimensional metamaterial formed with two independent sets of wires. The double-mesh twin-wire structure permits the propagation of a first mode without cut-off frequency and with low dispersion and high isotropy. These properties are similar to periodic structures with higher symmetries, such as glide symmetry. The variations of the equivalent refractive index are achieved with the dimension of the meandered wires. The potential of this new metamaterial is demonstrated with simulated results of a Luneburg meta-lens.

2013 ◽  
Vol 391 ◽  
pp. 232-236
Author(s):  
Wen Huan Yang ◽  
Hai Xu Chen ◽  
Shuang Xie ◽  
Chun Ren Fang

A new Multi-degree of freedom motor and its establishing of teeth layer parameters have been introduced in the paper, also including application method of database, namely using Quasi-Newton methods to solve the non-linear equations of the new motors magnetic circuit net, formed a refined method for designing and analyzing of motor. The establishment of 3d tooth layer parameters database, is provided for the calculation in the design of the new type motor conveniently.


2011 ◽  
Vol 181-182 ◽  
pp. 516-521
Author(s):  
Jian Guo Luo ◽  
Jian You Han

A new type of hybrid cubic manipulator with six degree of freedom(DOF) suggested based on traditional serial manipulator and parallel manipulator, three dimensional translation and rotation of output shaft obtained through lineal driving. Define the description of spacial moving capability of common couples and translation base and rotation base of mechanism, based on the fact of mechanism consists of components, a new description method by topological graph theory of components relationship suggested, new description of serial mechanism and parallel mechanism and hybrid mechanism obtained with this method, description elements include component pane and constrained component pane and component relationship line and constrained component relationship line and spacial relative moving capability between adjacent components. DOF(degree of freedom) of hybrid mechanism analysised with example based on the definition of dimensionity of branch spacial moving capability and mechanism spacial moving capability, necessary and sufficient condition of nonsingularity of mechanism presented. Method of analytic geometry used to find the regular cuboid of the reachable working space shape of mechanism, the volume of the reachable working space rest with the limit of translation of couplers, its influential factors obtained, still the rotational angle limits of output shaft at given configuration analysised through the method of drawing, and limit length of guideway etc. are the primary influential factors.


Author(s):  
Lee D. Peachey ◽  
Lou Fodor ◽  
John C. Haselgrove ◽  
Stanley M. Dunn ◽  
Junqing Huang

Stereo pairs of electron microscope images provide valuable visual impressions of the three-dimensional nature of specimens, including biological objects. Beyond this one seeks quantitatively accurate models and measurements of the three dimensional positions and sizes of structures in the specimen. In our laboratory, we have sought to combine high resolution video cameras with high performance computer graphics systems to improve both the ease of building 3D reconstructions and the accuracy of 3D measurements, by using multiple tilt images of the same specimen tilted over a wider range of angles than can be viewed stereoscopically. Ultimately we also wish to automate the reconstruction and measurement process, and have initiated work in that direction.Figure 1 is a stereo pair of 400 kV images from a 1 micrometer thick transverse section of frog skeletal muscle stained with the Golgi stain. This stain selectively increases the density of the transverse tubular network in these muscle cells, and it is this network that we reconstruct in this example.


2020 ◽  
Author(s):  
Peiyao Wang ◽  
Bangchuan Zhao ◽  
Jin Bai ◽  
Kunzhen Li ◽  
Hongyang Ma ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yuhang Yang ◽  
Zhiqiao Dong ◽  
Yuquan Meng ◽  
Chenhui Shao

High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas.


Sign in / Sign up

Export Citation Format

Share Document