scholarly journals Graffiti Characterization Prior to Intervention in the Punta Begoña Galleries (Getxo, North of Spain): Raman and XRF Spectroscopy in the Service of Restoration

2021 ◽  
Vol 11 (18) ◽  
pp. 8640
Author(s):  
Idoia Etxebarria ◽  
Nagore Prieto-Taboada ◽  
Estibaliz Lama ◽  
Gorka Arana ◽  
María Dolores Rodríguez-Laso ◽  
...  

The Historical and Cultural Heritage of Punta Begoña Galleries in Getxo (Bizkaia, North of Spain) are currently in restoration after being abandoned for years. For that reason, many graffiti, which directly affect the wall paintings, appear on most of their walls. Moreover, several graffiti overlap each other, which makes their removal more difficult. For all these reasons, the chemical characterization of these pigments is a priority to optimize the cleaning and consolidation treatments of wall paintings. That being the case, an analysis based on Raman spectroscopy and X-ray fluorescence was carried out to obtain information to help conservators remove the graffiti without damaging the mural paintings and the support. Nevertheless, the first step, using X-ray fluorescence and Raman spectroscopy, involved the need for a database to compare the results and identify the compounds. Thus, different commercial inks were elementally and molecularly characterized to complete the existing databases. After this, an analysis of the inks was carried out that noted the presence of several organic pigments, such as phthalocyanines. Inorganic pigments such as titanium oxide were identified as well. After the analysis, the selection of the best removal process could be carried out to provide the most effective treatment, avoiding the “trial-and-error” classical practice.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2160
Author(s):  
Alexander Bogdanov ◽  
Ekaterina Kaneva ◽  
Roman Shendrik

Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray diffraction study of the crystals of elpidite from Burpala (Russia) and Khan-Bogdo (Mongolia) deposits are reported. Some differences in the chemical compositions are observed and substitution at several structural positions within the structure of the compounds are noted. Based on the obtained results, a detailed crystal–chemical characterization of the elpidites under study was carried out. Three different structure models of elpidite were simulated: Na2ZrSi6O15·3H2O (related to the structure of Russian elpidite), partly Ca-replaced Na1.5Ca0.25ZrSi6O15·2.75H2O (close to elpidite from Mongolia), and a hypothetical CaZrSi6O15·2H2O. The vibration spectra of the models were obtained and compared with the experimental one, taken from the literature. The strong influence of water molecule vibrations on the shape of IR spectra of studied structural models of elpidite is discussed in the paper.


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2597-2611 ◽  
Author(s):  
Mario Bandiera ◽  
Patrice Lehuédé ◽  
Marco Verità ◽  
Luis Alves ◽  
Isabelle Biron ◽  
...  

This work aims to characterise the chemical composition of Roman opaque red glass sectilia dated to the 2nd century A.D and to shed light on Roman glassmaking production of different shades of red, from red to reddish-brown. Due to the lack of technical historical sources for this period many questions about technological aspects still remain. In this project a multi-disciplinary approach is in progress to investigate the red glass sectilia with several red hues from the Imperial Villa of Lucius Verus (161–169 A.D.) in Rome. First, colorimetric measurements were taken to identify the various red hues. The second step was chemical characterization of the samples and the identification of crystalline colouring phases. Particle Induced X-Ray Emission (PIXE) analysis was used to investigate the chemical composition of these glass samples, while the crystalline phases were identified by Raman Spectroscopy and Scanning Electrons Microscope with Energy Dispersive X-ray Spectrometry (SEM-EDS). Using SEM-EDS nanoparticles were detected as a colouring agent, the chemical composition and the morphology of which has been studied in depth. This information has been compared with the colorimetric analysis to establish any correlation with the different colour hues.


2014 ◽  
Vol 805 ◽  
pp. 343-349
Author(s):  
Carine F. Machado ◽  
Weber G. Moravia

This work evaluated the influence of additions of the ceramic shell residue (CSR), from the industries of Lost Wax Casting, in the modulus of elasticity and porosity of concrete. The CSR was ground and underwent a physical, chemical, and microstructural characterization. It was also analyzed, the environmental risk of the residue. In the physical characterization of the residue were analyzed, the surface area, and particle size distribution. In chemical characterization, the material powder was subjected to testing of X-ray fluorescence (XRF). Microstructural characterization was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The residue was utilized like addition by substitution of cement in concrete in the percentages of 10% and 15% by weight of Portland cement. It was evaluated properties of concrete in the fresh and hardened state, such as compressive strength, modulus of elasticity, absorption of water by total immersion and by capillarity. The results showed that the residue can be used in cement matrix and improve some properties of concrete. Thus, the CSR may contribute to improved sustainability and benefit the construction industry.


Author(s):  
E. López-Honorato ◽  
P. J. Meadows ◽  
J. Tan ◽  
Y. Xiang ◽  
P. Xiao

In this work we have deposited silicon carbide (SiC) at 1300°C with the addition of small amounts of propylene. The use of propylene and high concentrations of methyltrichlorosilane (9 vol %) allowed the deposition of superhard SiC coatings (42 GPa). The superhard SiC could result from the presence of a SiC–C solid solution, undetectable by X-ray diffraction but visible by Raman spectroscopy. Another sample obtained by the use of 50 vol % Argon, also showed the formation of SiC with good properties. The use of a flat substrate together with the particles showed the importance of carrying out the analysis on actual particles rather than in flat substrates. We show that it is possible to characterize the anisotropy of pyrolytic carbon by Raman spectroscopy.


Author(s):  
Carolyn Dillian

This article discusses the current status of archaeological obsidian studies, including techniques used in characterization and sourcing studies, obsidian hydration, and regional syntheses. It begins with an overview of obsidian and the unique formation processes that create it before turning to a discussion of the significance of characterization and sourcing techniques for understanding prehistoric obsidian trade and exchange. It then considers the problematic aspects of the term “sourcing,” despite its ubiquitous use in archaeology and archaeometry, along with the use of X-ray fluorescence in the chemical characterization of obsidian. It also explores obsidian hydration dating methods and equations, factors that can affect the date assignments for hydration specimens, and the various uses of obsidian in prehistoric times. Finally, it addresses some important questions relating to obsidian research and suggests new directions in the field.


Sign in / Sign up

Export Citation Format

Share Document