scholarly journals Phase Transformation and Characterization of 3D Reactive Microstructures in Nanoscale Al/Ni Multilayers

2021 ◽  
Vol 11 (19) ◽  
pp. 9304
Author(s):  
Yesenia Haydee Sauni Camposano ◽  
Sascha Sebastian Riegler ◽  
Konrad Jaekel ◽  
Jörg Schmauch ◽  
Christoph Pauly ◽  
...  

Reactive multilayer systems represent an innovative approach for potential usage in chip joining applications. As there are several factors governing the energy release rate and the stored chemical energy, the impact of the morphology and the microstructure on the reaction behavior is of great interest. In the current work, 3D reactive microstructures with nanoscale Al/Ni multilayers were produced by alternating deposition of pure Ni and Al films onto nanostructured Si substrates by magnetron sputtering. In order to elucidate the influence of this 3D morphology on the phase transformation process, the microstructure and the morphology of this system were characterized and compared with a flat reactive multilayer system on a flat Si wafer. The characterization of both systems was carried out before and after a rapid thermal annealing treatment by using scanning and transmission electron microscopy of the cross sections, selected area diffraction analysis, and differential scanning calorimetry. The bent shape of multilayers caused by the complex topography of silicon needles of the nanostructured substrate was found to favor the atomic diffusion at the early stage of phase transformation and the formation of two intermetallic phases Al0.42Ni0.58 and AlNi3, unlike the flat multilayers that formed a single phase AlNi after reaction.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangtao Xing ◽  
Weili Wang ◽  
Wenzheng Xu ◽  
Tianle Yao ◽  
Jun Dong ◽  
...  

In order to improve the safety of hexanitrohexaazaisowurtzitane (CL-20), submicron CL-20 particles were prepared by a siphon ultrasonic-assisted spray refining experimental device. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and the impact sensitivity of the samples was tested. The results show that the particle size of siphon-refined CL-20 is about 800 nm~1 μm, which is more smooth, mellow, and dense than that of CL-20 prepared by a traditional pressure-refined method. The peak diffraction angle of pressure- and siphon-refined CL-20 is basically the same as that of raw CL-20, and their crystal forms are ε type. The peak strength of pressure- and siphon-refined CL-20 decreased obviously. The apparent activation energy of pressure-refined CL-20 and siphon-refined CL-20 is 13.3 kJ/mol and 11.95 kJ/mol higher than that of raw CL-20, respectively. The thermal stability of CL-20 is improved. The activation enthalpy (ΔH#) is significantly higher than that of raw CL-20, and the characteristic drop is 70.4% and 82.7% higher than that of raw CL-20. The impact sensitivity of siphon-refined CL-20 is lower than that of pressure-refined CL-20, so the safety performance of an explosive is improved obviously.


2021 ◽  
pp. 002199832110558
Author(s):  
Panayiotis Ketikis ◽  
Efthimios Damopoulos ◽  
Georgios Pilatos ◽  
Panagiotis Klonos ◽  
Apostolos Kyritsis ◽  
...  

The impact of the incorporation of graphene nanoplatelets (GN) on the properties of hydroxyl-terminated poly(dimethylsiloxane) (PDMS) matrices was investigated. The composites were prepared by solution mixing, using tetrahydrofuran (THF) as a solvent. Brookfield viscosimetry, implemented during the vulcanization process, revealed that GN increases the viscosity of the system, compared to pristine PDMS, proportionally to its concentration. X-ray diffraction patterns suggested an efficient dispersion of GN in the polysiloxane matrix. The D and G bands ratio (ID/IG) calculation, based on RAMAN spectra of GN/PDMS specimens, revealed more defects in graphene nanoplatelets when incorporated in the PDMS matrix. By differential scanning calorimetry (DSC), a marginal increase in crystallization, glass transition and melting temperatures of PDMS in GN/PDMS composites was observed. Improvement of the thermal stability of LMW PDMS composites, especially for higher GN concentrations (3 and 5 phr), was noticed by thermogravimetric analysis (TGA). Additionally, GN enhanced the tensile strength of composites, up to 73% for the 3 phr GN/LMW PDMS composite. A significant increase in the elongation at break was recorded, whereas no effect on the modulus of elasticity was recorded. The decrease in toluene-swelling, for the LMW PDMS matrix composites, was attributed to the increase in the tortuosity path because of the efficient dispersion of GN. A decrease in oxygen permeability of 55–65% and 44–58% was measured in membranes made of PDMS composites containing 0.5 phr and 1 phr GN, respectively. Dielectric relaxation spectroscopy (DRS) measurements recorded a significant increase in the conductivity of the higher graphene content composites.


Author(s):  
Karolina Fila ◽  
Beata Podkościelna

<p>The aim of this research was the synthesis of polymers with the addition of S,S'-thiodi-4,1-phenylene bis(thiomethacrylate) (DMSPS) by bulk polymerization. Styrene (St), divinylbenzene (DVB) and ethylene glycol dimethacrylate (EGDMA) were used for the copolymerization as main monomers. The chemical structures of sulfur-containing polymers were confirmed by the spectroscopic analysis (ATR/FT-IR). In order to determine the impact of the sulfur derivative (DMSPS) addition on thermal properties of the obtained copolymers, differential scanning calorimetry (DSC) was performed. The hardness tests of the obtained copolymers were also applied using a Shore durometer.</p>


2007 ◽  
Vol 127 ◽  
pp. 91-96 ◽  
Author(s):  
Lin Geng ◽  
Bin Xu ◽  
Y.T. Li ◽  
Ai Bin Li ◽  
Gui Song Wang

(α+β)/β phase transformation temperature of a TC11 titanium alloy was confirmed to be 1035°C, which was obtained by three methods including the calculation method, differential scanning calorimetry and metallographic techniques. Based on this result, annealing treatments below and above the (α+β)/β phase transformation temperature were carried out, and the microstructure of the TC11 alloys before and after annealing treatment was analyzed by SEM. The result showed that conventional annealing below 1035°C does not change the Widmanstaten structure of TC11 alloy, though the thickness of α lamellar structure becomes thicker with increasing the annealing temperature. The microstructure of the TC11 alloy treated by annealing above the α+β/β transformation temperature is non-uniform because of the different forming temperature and growing duration of α phase in the TC11 alloy.


2011 ◽  
Vol 687 ◽  
pp. 485-489
Author(s):  
Zhi Shan Yuan ◽  
Zhao Wei Feng ◽  
Wei Dong Miao ◽  
Jiang Bo Wang ◽  
Jin Zhou ◽  
...  

TiNi shape memory alloys exhibiting high damping capacity are currently expected to be used as structural materials for energy dissipation or vibration control applications. In this paper, the characterization of damping behaviour of a binary TiNi SMA was performed by dynamic mechanical analyzer (DMA) instrument and differential scanning calorimetry (DSC) equipment. Damping tests measuring Tanδ, storage modulus E' and loss modulus E" of Ti49.2Ni50.8 binary shape memory alloy were investigated at different temperature, using different frequency and strain amplitude. It shows that quenching rate has a significant effect on the damping capacity of TiNi SMA by exhibiting different phase transformation behavior. Internal friction values (Q-1) corresponding to cubic B2 parent phase to rhombohedral R phase transformation, B2-R, and R-B19' monoclinic martensite transformation are as high as 0.177 and 0.078, respectively. The occurrence of R-phase significantly softens the storage modulus and thus promotes the damping capacity of TiNi SMAs.


Author(s):  
J. Cooper ◽  
O. Popoola ◽  
W. M. Kriven

Nickel sulfide inclusions have been implicated in the spontaneous fracture of large windows of tempered plate glass. Two alternative explanations for the fracture-initiating behaviour of these inclusions have been proposed: (1) the volume increase which accompanies the α to β phase transformation in stoichiometric NiS, and (2) the thermal expansion mismatch between the nickel sulfide phases and the glass matrix. The microstructure and microchemistry of the small inclusions (80 to 250 μm spheres), needed to determine the cause of fracture, have not been well characterized hitherto. The aim of this communication is to report a detailed TEM and EDS study of the inclusions.


Author(s):  
B. M. Culbertson ◽  
M. L. Devinev ◽  
E. C. Kao

The service performance of current dental composite materials, such as anterior and posterior restoratives and/or veneer cements, needs to be improved. As part of a comprehensive effort to find ways to improve such materials, we have launched a broad spectrum study of the physicochemical and mechanical properties of photopolymerizable or visible light cured (VLC) dental composites. The commercially available VLC materials being studied are shown in Table 1. A generic or neat resin VLC system is also being characterized by SEM and TEM, to more fully understand formulation variables and their effects on properties.At a recent dental research meeting, we reported on the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) characterization of the materials in Table 1. It was shown by DSC and DMA that the materials are substantially undercured by commonly used VLC techniques. Post curing in an oral cavity or a dry environment at 37 to 50°C for 7 or more hours substantially enhances the cure of the materials.


2020 ◽  
Vol 2020 (10) ◽  
pp. 19-33
Author(s):  
Nadiia NOVYTSKA ◽  
◽  
Inna KHLIEBNIKOVA ◽  

The market of tobacco products in Ukraine is one of the most dynamic and competitive. It develops under the influence of certain factors that cause structural changes, therefore, the aim of the article is to conduct a comprehensive analysis of transformation processes in the market of tobacco and their alternatives in Ukraine and identify the factors that cause them. The high level of tax burden and the proliferation of alternative products with a potentially lower risk to human health, including heating tobacco products and e-cigarettes, are key factors in the market’s transformation process. Their presence leads to an increase in illicit turnover of tobacco products, which accounts for 6.37% of the market, and the gradual replacement of cigarettes with alternative products, which account for 12.95%. The presence on the market of products that are not taxed or taxed at lower rates is one of the reasons for the reduction of excise duty revenues. According to the results of 2019, the planned indicators of revenues were not met by 23.5%. Other reasons for non-fulfillment of excise duty revenues include: declining dynamics of the tobacco products market; reduction in the number of smokers; reorientation of «cheap whites» cigarette flows from Ukraine to neighboring countries; tax avoidance. Prospects for further research are identified, namely the need to develop measures for state regulation and optimization of excise duty taxation of tobacco products and their alternatives, taking into account the risks to public health and increasing demand of illegal products.


2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


Sign in / Sign up

Export Citation Format

Share Document