scholarly journals Study on the Influence of Triangular Groove Structure on Steady-State Flow Force Compensation Characteristics

2021 ◽  
Vol 11 (23) ◽  
pp. 11354
Author(s):  
Ruichuan Li ◽  
Xinkai Ding ◽  
Jianghai Lin ◽  
Feng Chi ◽  
Jikang Xu ◽  
...  

In this study, a structurally improved spool was designed. The diameter of one side of the spool stem was reduced, making the spool stem into a rounded table shape. A triangular groove was circumscribed on the step and on the same side. After liquid flow was guided through the triangular groove, the flow direction changed. A flow component in the negative direction was generated, which reversely impacted the liquid flow in the positive direction. The liquid flow angle at the outlet increased; that is, jet angle increased and flow force decreased. The simulation results show that, increasing the depth, H, of the triangular groove has a positive effect on flow-force compensation and was conducive to the stability of the valve core. Properly increasing the groove’s bottom diameter, D1, of the triangular groove was conducive to the stability of the spool, but when D1 was too large, the flow force increased. The experimental results are consistent with the simulation results, which proves that the improved structure can effectively reduce the flow force of the spool.

2021 ◽  
Vol 13 (7) ◽  
pp. 3744
Author(s):  
Mingcheng Zhu ◽  
Shouqian Li ◽  
Xianglong Wei ◽  
Peng Wang

Fishbone-shaped dikes are always built on the soft soil submerged in the water, and the soft foundation settlement plays a key role in the stability of these dikes. In this paper, a novel and simple approach was proposed to predict the soft foundation settlement of fishbone dikes by using the extreme learning machine. The extreme learning machine is a single-hidden-layer feedforward network with high regression and classification prediction accuracy. The data-driven settlement prediction models were built based on a small training sample size with a fast learning speed. The simulation results showed that the proposed methods had good prediction performances by facilitating comparisons of the measured data and the predicted data. Furthermore, the final settlement of the dike was predicted by using the models, and the stability of the soft foundation of the fishbone-shaped dikes was assessed based on the simulation results of the proposed model. The findings in this paper suggested that the extreme learning machine method could be an effective tool for the soft foundation settlement prediction and assessment of the fishbone-shaped dikes.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2347
Author(s):  
Yanyan Wang ◽  
Lin Wang ◽  
Ruijuan Zheng ◽  
Xuhui Zhao ◽  
Muhua Liu

In smart homes, the computational offloading technology of edge cloud computing (ECC) can effectively deal with the large amount of computation generated by smart devices. In this paper, we propose a computational offloading strategy for minimizing delay based on the back-pressure algorithm (BMDCO) to get the offloading decision and the number of tasks that can be offloaded. Specifically, we first construct a system with multiple local smart device task queues and multiple edge processor task queues. Then, we formulate an offloading strategy to minimize the queue length of tasks in each time slot by minimizing the Lyapunov drift optimization problem, so as to realize the stability of queues and improve the offloading performance. In addition, we give a theoretical analysis on the stability of the BMDCO algorithm by deducing the upper bound of all queues in this system. The simulation results show the stability of the proposed algorithm, and demonstrate that the BMDCO algorithm is superior to other alternatives. Compared with other algorithms, this algorithm can effectively reduce the computation delay.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1554
Author(s):  
Chao Liu ◽  
Zhao-Jun Bu ◽  
Azim Mallik ◽  
Yong-Da Chen ◽  
Xue-Feng Hu ◽  
...  

In a natural environment, plants usually interact with their neighbors predominantly through resource competition, allelopathy, and facilitation. The occurrence of the positive effect of allelopathy between peat mosses (Sphagnum L.) is rare, but it has been observed in a field experiment. It is unclear whether the stability of the water table level in peat induces positive vs. negative effects of allelopathy and how that is related to phenolic allelochemical production in Sphagnum. Based on field experiment data, we established a laboratory experiment with three neighborhood treatments to measure inter-specific interactions between Sphagnum angustifolium (Russ.) C. Jens and Sphagnum magellanicum Brid. We found that the two species were strongly suppressed by the allelopathic effects of each other. S. magellanicum allelopathically facilitated S. angustifolium in the field but inhibited it in the laboratory, and relative allelopathy intensity appeared to be positively related to the content of released phenolics. We conclude that the interaction type and intensity between plants are dependent on environmental conditions. The concentration of phenolics alone may not explain the type and relative intensity of allelopathy. Carefully designed combined field and laboratory experiments are necessary to reveal the mechanism of species interactions in natural communities.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 3124-3130 ◽  
Author(s):  
HUI CONG LIU ◽  
XIU QING XU ◽  
WEI PING LI ◽  
YAN HONG GUO ◽  
LI-QUN ZHU

The shell material of microcapsules has an important effect on the electrolytic co-deposition behavior, the release of core material and the surface performance of composite coating. This paper discussed the tensile property and the stability of three shell materials including polyvinyl alcohol (PVA), gelatin and methyl cellulose (MC). It is found that these three shell materials have good mechanical strength and flexibility which are favorable to electrolytic co-deposition and stability of microcapsules in composite coating and that MC has well permeability and porosity which has a positive effect on the release of the core material in composite coating. Moreover, the study of the thermal properties and water vapor permeability of the three shell materials showed that their permeability improved with increase of temperature and humidity. In addition, the composite copper coating containing microcapsules with PVA, gelatin or MC as shell material was prepared respectively.


2011 ◽  
Vol 58-60 ◽  
pp. 1018-1024
Author(s):  
Feng Ye ◽  
Gui Chen Xu ◽  
Di Kang Zhu

This paper reviews several current methods of calculating buffer on the basis of pointing out each merits and pitfalls and then introduces Bayesian statistical approach to CCS / BM domain to calculate the size of the project buffer, to overcome that the current method of the buffer calculation is too subjective and the defect on lacking of practical application. In Crystal Ball, we compare the simulation results of implementation process on the benchmark of C&PM, RESM and SM. The results show that the buffer using this method can ensure the stability of the project’s completion probability, and this method has great flexibility.


2016 ◽  
Vol 809 ◽  
pp. 873-894 ◽  
Author(s):  
John E. Sader ◽  
Cecilia Huertas-Cerdeira ◽  
Morteza Gharib

Cantilevered elastic sheets and rods immersed in a steady uniform flow are known to undergo instabilities that give rise to complex dynamics, including limit cycle behaviour and chaotic motion. Recent work has examined their stability in an inverted configuration where the flow impinges on the free end of the cantilever with its clamped edge downstream: this is commonly referred to as an ‘inverted flag’. Theory has thus far accurately captured the stability of wide inverted flags only, i.e. where the dimension of the clamped edge exceeds the cantilever length; the latter is aligned in the flow direction. Here, we theoretically examine the stability of slender inverted flags and rods under steady uniform flow. In contrast to wide inverted flags, we show that slender inverted flags are never globally unstable. Instead, they exhibit bifurcation from a state that is globally stable to multiple equilibria of varying stability, as flow speed increases. This theory is compared with new and existing measurements on slender inverted flags and rods, where excellent agreement is observed. The findings of this study have significant implications to investigations of biological phenomena such as the motion of leaves and hairs, which can naturally exhibit a slender geometry with an inverted configuration.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.


Author(s):  
Vahid Bahrami ◽  
Ahmad Kalhor ◽  
Mehdi Tale Masouleh

This study intends to investigate a dynamic modeling and design of controller for a planar serial chain, performing 2-DoF, in interaction with a cable-driven robot. The under study system can be used as a rehabilitation setup which is helpful for those with arm disability. The latter goal can be achieved by applying the positive tensions of the cable-driven robot which are designed based on feedback linearization approach. To this end, the system dynamics formulation is developed using Lagrange approach and then the so-called Wrench-Closure Workspace (WCW) analysis is performed. Moreover, in the feedback linearization approach, the PD and PID controllers are used as auxiliary controllers input and the stability of the system is guaranteed as a whole. From the simulation results it follows that, in the presence of bounded disturbance based on Roots Mean Square Error (RMSE) criteria, the PID controller has better performance and tracking error of the 2-DoF robot joints are improved 15.29% and 24.32%, respectively.


2015 ◽  
Vol 76 (2) ◽  
Author(s):  
Ali Sobhanmanesh ◽  
Ramli Nazir ◽  
Nader SaadatkhaH

his paper attempts to evaluate the effect of surface crust layer on the stability and deformation behavior of embankment. A full-scale case history trial embankment constructed on Muar flat in the valley of the Muar River in Malaysia was modeled and analyzed. The Muar trial embankment was simulated in two- and three-dimension (2-D and 3-D) utilizing finite element programs PLAXIS 2-D AND PLAXIS 3-D FOUNDATION, using staged-construction procedure. Sensitivity analysis was performed by varying the thickness of weathered crust layer beneath the embankment fill, i.e., three models of embankment with no surface crust, 1 m surface crust and 2 m surface crust layer. Predictions were made for the vertical and the horizontal displacements of the embankment. Factor of safety for each meter increase in the embankment height was defined until the failure is reached. It is concluded that the bearing capacity of the ground and the deformation behavior of the embankment were sensitive to the thickness of the weathered crust layer. The surface crust layer has a positive effect on the stability of the embankment and consequently reduces the settlement and increases the failure height of the embankment fill up to 37%.


Author(s):  
Swathi Kommamuri ◽  
P. Sureshbabu

Power system stability improvement by a coordinate Design ofThyristor Controlled Series Compensator (TCSC) controller is addressed in this paper.Particle Swarm Optimization (PSO) technique is employed for optimization of the parameterconstrained nonlinear optimization problem implemented in a simulation environment. The proposed controllers are tested on a weakly connected power system. The non-linear simulation results are presented. The eigenvalue analysis and simulation results show the effectiveness and robustness of proposed controllers to improve the stability performance of power system by efficient damping of low frequency oscillations under various disturbances.


Sign in / Sign up

Export Citation Format

Share Document