scholarly journals Cloning and Functional Identification of SlPG49 in Solanum lycopersicum

2021 ◽  
Vol 11 (23) ◽  
pp. 11450
Author(s):  
Weiqiang Li ◽  
Liai Xu ◽  
Rui Xia ◽  
Ying Shen ◽  
Zhujun Zhu ◽  
...  

The modification and degradation of pectin in cell walls are necessary for the fruit softening process, which involves a series of pectin-modifying enzymes. Polygalacturonases (PGs) are a major group of pectin-hydrolyzing enzymes, which participate in fruit maturation, organ shedding, pollen development, and other processes by catalyzing the degradation of polygalacturonic acid. However, their function in plants has not yet been fully elucidated. In this paper, a full-length cDNA encoding SlPG49 was cloned from a tomato. Sequence alignment and phylogenetic analysis demonstrated that SlPG49 contains four typical conserved domains and belongs to clade E in PG classification. Quantitative real-time PCR analysis showed that SlPG49 was highly expressed in fruits during the softening stage, indicating that SlPG49 may be involved in fruit softening. Subcellular localization results revealed that SlPG49 was located in the cell membrane and the cell wall. In addition, an in vitro enzymatic activity assay confirmed that SlPG49 does have the ability to catalyze the hydrolysis of polygalacturonic acid. These results indicate that SlPG49 is a newly discovered PG gene involved in tomato fruit softening, and provide an experimental basis for elucidating the biological functions of plant PGs during fruit softening.

1969 ◽  
Vol 17 (7) ◽  
pp. 443-453 ◽  
Author(s):  
N. O. JACOBSEN ◽  
P. LETH JORGENSEN

The purpose was to study the nature of the adenosine triphosphatase (ATPase) localized to plasma membranes by the lead method and the significance of the lead-catalyzed hydrolysis of adenosine triphosphate (ATP) for the staining of fixed kidney. A modified Wachstein and Meisel's medium was used. The staining of sections of microsomal sediments from rat kidney was compared with the in vitro activity of (Na+ + K+)–, Mg++– and Ca++– ATPase in the presence of lead. The histochemical relevance of these observations was tested on sections of rat kidney. Localization of (Na+ + K+)–ATPase was not possible at concentrations of lead below the inactivating level (0.5 mM). Mg++–ATPase and Ca++– ATPase were only partially inhibited by 3.6 mM lead and were localized to plasma membranes in glutaraldehyde-fixed kidney. The staining followed a course of activation by Ca++ and Mg++ characteristic for enzymatic hydrolysis and different from the activation of nonenzymatic hydrolysis of ATP. Staining of fixed tissue was maximal at 2-3 mM lead and decreased at higher concentrations. In Mg++–deficient media membrane staining was weak or absent at 5.2-6.8 mM lead, where the rate of nonenzymatic hydrolysis of ATP was high. Thus, in the medium used the lead-catalyzed hydrolysis of ATP contributed little to the staining of fixed kidney.


1984 ◽  
Vol 75 (4) ◽  
pp. 891-894 ◽  
Author(s):  
James W. Rushing ◽  
Donald J. Huber

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 478C-478
Author(s):  
Jong-Pil Chun ◽  
Donald J. Huber

The catalytic capacity of tomato polygalacturonase (PG) toward soluble pectic polymers is in excess of activity expressed in vivo; however, in vitro assays of PG have traditionally been performed under conditions (pH 4.0 to 4.5, 150 mM NaCl) that likely do not reflect the apoplastic environment of ripening tomato fruit. In this study, hydrolysis of pectin by purified tomato PG (isozyme 2) was examined in response to K+ (the predominate apoplastic cation) and over the pH range from 3.0 to 6.0. In the presence of K+, PG activity toward polygalacturonic acid measured reductometrically increased nearly 3.5-fold from pH 4.0 to pH 5.5. In the presence of Na+, activity decreased 90% over the same pH range. PG-mediated degradation of cell wall from mature-green fruit showed divergent hydrolytic patterns in response to pH and K+. At pH 4.5 in the presence of K+ (as KCl), catalysis resulted in both solubilization and extensive depolymerization of cell wall pectin, with oligomers accounting for a significant portion of the hydrolysis products. At pH 5.5, the total quantity of wall pectin released in response to PG2 was similar to that at pH 4.5; however, oligomer production was strongly suppressed at the higher pH. At pH values favoring extensive depolymerization, low mol mass products were produced at 5 mM K+ and increased to a maximum at 100 mM K+. At higher pH, hydrolysis patterns were not affected by [K+]. pH and ionic effects may contribute to the distinctive patterns of pectin hydrolysis observed for different fruits.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


2019 ◽  
Vol 16 (3) ◽  
pp. 245-248
Author(s):  
Hummera Rafique ◽  
Aamer Saeed ◽  
Ehsan Ullah Mughal ◽  
Muhammad Naveed Zafar ◽  
Amara Mumtaz ◽  
...  

Background: (±)-6,8-Dihydroxy-3-undecyl-3,4-dihydroisochromen-1-one is one of the structural analog of several substituted undecylisocoumarins isolated from Ononis natrix (Fabaceae), has been successfully synthesized by direct condensation of homopthalic acid (1) with undecanoyl chloride yields isochromen-1-one (2). Methods: Alkaline hydrolysis of (2) gave the corresponding keto-acid (3), which is then reduced to hydroxy acid (4) then its cyclodehydration was carried out with acetic anhydride to afford 3,4- dihydroisochromen-1-one (5). Followed by demethylation step, the synthesis of target 6,8- dihydroxy-7-methyl-3-undecyl-3,4-dihydroisocoumarin (6) was achieved. Results: In vitro antibacterial screening of all the synthesized compounds were carried out against ten bacterial strains by agar well diffusion method. Conclusion: Newly synthesized molecules exhibited moderate antibacterial activity and maximum inhibition was observed against Bacillus subtilus and Salmonella paratyphi.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 335
Author(s):  
Silvia Tampucci ◽  
Antonella Castagna ◽  
Daniela Monti ◽  
Clementina Manera ◽  
Giuseppe Saccomanni ◽  
...  

Chitosan is receiving increasing attention from the food industry for being a biodegradable, non-toxic, antimicrobial biopolymer able to extend the shelf life of, and preserve the quality of, fresh food. However, few studies have investigated the ability of chitosan-based coatings to allow the diffusion of bioactive compounds into the food matrix to improve its nutraceutical quality. This research is aimed at testing whether a hydrophilic molecule (tyrosol) could diffuse from the chitosan-tyrosol coating and cross the tomato peel. To this end, in vitro permeation tests using excised tomato peel and an in vivo application of chitosan-tyrosol coating on tomato fruit, followed by tyrosol quantification in intact fruit, peel and flesh during a seven-day storage at room temperature, were performed. Both approaches demonstrated the ability of tyrosol to permeate across the fruit peel. Along with a decreased tyrosol content in the peel, its concentration within the flesh was increased, indicating an active transfer of tyrosol into this tissue. This finding, together with the maintenance of constant tyrosol levels during the seven-day storage period, is very promising for the use of chitosan formulations to produce functional tomato fruit.


Sign in / Sign up

Export Citation Format

Share Document