scholarly journals Fuzzy Logic Controller for Automating Electrical Conductivity and pH in Hydroponic Cultivation

2021 ◽  
Vol 12 (1) ◽  
pp. 405
Author(s):  
Cheng-Hung Chen ◽  
Shiou-Yun Jeng ◽  
Cheng-Jian Lin

This study proposes a fuzzy logic controller for adjusting the electrical conductivity (EC) and pH of the nutrient solution in a hydroponic system. The proposed control system detects the EC and pH of the solution through sensors and adjusts the working time of the solution pump through the fuzzy controller. Specifically, the EC and pH of the nutrient solution are maintained at specific values. A Raspberry Pi3 development board is used in the proposed control system to realize and solve the problem of adjusting the EC and pH of the solution. In the fuzzy controller, the inputs are EC and pH sensors, and the output is the operating time of the pump. Experimental results indicate that the proposed control system can effectively reduce the measurement burden and complex calculations of producers by adjusting nutrient solutions.

Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sumardi Sadi

DC motors are included in the category of motor types that are most widely used both in industrial environments, household appliances to children's toys. The development of control technology has also made many advances from conventional control to automatic control to intelligent control. Fuzzy logic is used as a control system, because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this research is to study and apply the fuzzy mamdani logic method to the Arduino uno microcontroller, to control the speed of a DC motor and to control the speed of the fan. The research method used is an experimental method. Global testing is divided into three, namely sensor testing, Pulse Width Modulation (PWM) testing and Mamdani fuzzy logic control testing. The fuzzy controller output is a control command given to the DC motor. In this DC motor control system using the Mamdani method and the control system is designed using two inputs in the form of Error and Delta Error. The two inputs will be processed by the fuzzy logic controller (FLC) to get the output value in the form of a PWM signal to control the DC motor. The results of this study indicate that the fuzzy logic control system with the Arduino uno microcontroller can control the rotational speed of the DC motor as desired.


2018 ◽  
Vol 248 ◽  
pp. 02005
Author(s):  
Dirman Hanafi ◽  
Mohamed Najib Ribuan ◽  
Wan HamidahWan Abas ◽  
Hidayat ◽  
Elmy Johana ◽  
...  

This paper presents the online control system application for improving the DC motor performance. DC motor widely used in industries and many appliances. For this aim fuzzy logic controller is applied. The type of fuzzy controller use is an incremental fuzzy logic controller (IFLC). The IFLC is developed by using MATLAB Simulink Software and implemented in online position control system applying RAPCON board as a platform. The experimental results produced the best gains of the IFLC are 1.785, 0.0056955 and 0.01 for error gain (GE), gain of change error (GCE) and gain of output (GCU) respectively. Its produce smaller rise time, peak time, 0% overshoot and smaller settling time. Beside that the IFLC response also able to follow the set point. The controller response parameters values are also acceptable. It means that the IFLC suitable to be use for improving the position control system performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Stefanos Theodoropoulos ◽  
Dionisis Kandris ◽  
Maria Samarakou ◽  
Grigorios Koulouras

This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.


Revista CERES ◽  
2011 ◽  
Vol 58 (5) ◽  
pp. 619-624 ◽  
Author(s):  
Adriene Woods Pedrosa ◽  
Herminia Emilia Prieto Martinez ◽  
Edson Marcio Matiello ◽  
Paulo Cezar Rezende Fontes ◽  
Paulo Roberto Gomes Pereira

The objective of this work was to evaluate the quality of fruits and the nutritional status of cucumber CV. Aodai cultivated in nutrient solutions with different N:K ratios. The hydroponic cultivation was initially performed, during the vegetative growth, in nutrient solution with 1:2.0 mmol L-1 N:K, and, later, during fruit setting, in four different nutrient solutions with N:K (w/w) at the ratios 1:1.4, 1:1.7, 1:2.0 and 1:2.5. An additional treatment with a nutrient solution containing the ratio 1:2.2 (w/w) N:K during the vegetative growth and N:K 1:1.4 (w/w) during fruit setting, both with 10% ammonium (NH4+) was included. The treatments were arranged in a randomized design with six replicates. Irrigation was carried out with deionized water until seed germination, and then with nutrient solution until 30 days after germination, when plants were transplanted. Plants in the hydroponic growing beds were irrigated with the solutions for vegetative growth, and, after 21 days, the solutions were replaced by solutions for fruit setting. At 45 and 60 days after transplanting, the fresh weight, length, diameter, volume and firmness of the fruit were evaluated, and, at 45 days after transplanting, the macronutrient concentrations in the leaves were determined. The use of different N:K ratios during fruit setting influenced the cucumber production. The ratio of 1.0:1.7 N: K (w/w), with 10% of N in the form of ammonia, is recommended for the whole cycle.


2015 ◽  
Vol 789-790 ◽  
pp. 693-699
Author(s):  
Alaa Khalifa ◽  
Ahmed Ramadan

This paper concerns with the control system design for a teleoperated endoscopic surgical manipulator system that uses PHANTOM Omni haptic device as the master and a 4-DOF parallel manipulator (2-PUU_2-PUS) as the slave. PID control algorithm was used to achieve the trajectory tracking, but the error in each actuated joint reached 0.6 mm which is not satisfactory in surgical application. The design of a control algorithm for achieving high trajectory tracking is needed. Simulation on the virtual prototype of the 4-DOF parallel manipulator has been achieved by combining MATLAB/Simulink with ADAMS. Fuzzy logic controller is designed and tested using the interface between ADAMS and MATLAB/Simulink. Signal constraint block adjusted the controller parameters for each actuated prismatic joint to eliminate the overshoot in most of position responses. The simulation results illustrate that the fuzzy logic control algorithm can achieve high trajectory tracking. Also, they show that the fuzzy controller has reduced the error by approximately 50 percent.


2021 ◽  
Vol 19 (3) ◽  
pp. 105-110
Author(s):  
A. M. Sagdatullin ◽  

The issue of increasing the efficiency of functioning of classical control systems for technological processes and objects of oil and gas engineering is investigated. The relevance of this topic lies in the need to improve the quality of the control systems for the production and transportation of oil and gas. The purpose of the scientific work is to develop a neuro-fuzzy logic controller with discrete terms for the control and automation of pumping units and pumping stations. It is noted that fuzzy logic, neural network algorithms, together with control methods based on adaptation and synthesis of control objects, make it possible to learn the automation system and work under conditions of uncertainty. Methods for constructing classical control systems are studied, the advantages and disadvantages of fuzzy controllers, as the main control system, are analyzed. A method for constructing a control system based on a neuro-fuzzy controller with discrete terms in conditions of uncertainty and dynamic parameters of the process is proposed. The positive features of the proposed regulator include a combination of fuzzy reasoning about a technological object and mathematical predictive models, a fuzzy control system gains the possibility of subjective description based on neural network structures, as well as adaptation to the characteristics of the object. The graph of dependence for the term-set of the controlled parameter on the degree of membership is presented. A possible implementation of tracking the triggering of one of the rules of the neuro-fuzzy system in the format of functional block diagrams is presented. The process of forming an expert knowledge base in a neuro-fuzzy control system is considered. For analysis, a graph of the dependence of the output parameter values is shown. According to the results obtained, the deviation of the values for the model and the real process does not exceed 18%, which allows us to speak of a fairly stable operation of the neuro-fuzzy controller in automatic control systems.


2017 ◽  
Vol 30 (4) ◽  
pp. 818-824 ◽  
Author(s):  
DEISE SILVA CASTRO PIMENTEL CARDOSO ◽  
MARIA APARECIDA NOGUEIRA SEDIYAMA ◽  
YONARA POLTRONIERI ◽  
MAIRA CHRISTINA MARQUES FONSECA ◽  
YANE FERNANDES NEVES

ABSTRACT The N:K ratio influences the balance between vegetative and reproductive stages, because potassium plays important roles in the processes that regulate plant growth when the nitrogen availability is high. However, there is a lack of information on the N:K ratio suitable for cucumber cultivation in an NFT-hydroponic system. The objective of this study is to evaluate the different N:K ratios in fruiting nutrient solutions for cucumber production in a hydroponic system. Treatments consisted of two cucumber hybrids (Natsuno Kagayaki and Runner) and four nutrition solutions with different N:K ratios (w/w) (1:0.5, 1:1.0, 1:2.0, and 1:3.0) in the reproductive phase arranged as split plots in a randomized block design with four replications. On the 33rd day after sowing (DAS), the SPAD index on the fourth expanded leaf from the plant apex, number of broaches, and harvests were evaluated. The aerial parts of the plants were collected on the 54th DAS for evaluation of fresh mass, dry mass, and number of leaves per plant. The results showed that the highest concentration of K in the fruiting nutrient solution does not alter the length of the fruits but increases their diameter yield. The N:K ratios in the 1:2.0 and 1:3.0 (w/w) nutrient solutions provided greater yields in both evaluated hybrids. The hybrid Natsuno Kagayaki, however, showed the highest productivity, and it is recommended for hydroponic cultivation.


Author(s):  
Mairton G. da Silva ◽  
Tales M. Soares ◽  
Hans R. Gheyi ◽  
Itamar de S. Oliveira ◽  
José A. da Silva Filho ◽  
...  

ABSTRACT The present study used a hydroponic system with leveled channels, in order to evaluate coriander cultivation under different intervals of nutrient solution recirculation and the use of freshwater and brackish water. The experiment was carried out in a randomized block design with five replicates, in a 2 x 4 factorial scheme, from February to March 2014. Two levels of electrical conductivity (EC) of water (0.32 and 4.91 dS m-1) and four frequencies of nutrient solution recirculation (at intervals of 0.25, 2, 4 and 8 h) were evaluated. This experimental design was adopted in the evaluations performed at 10, 15 and 25 days after transplantation (DAT). Additionally, at 21 DAT subplots were established for the evaluation of plant position (initial, intermediate and final) along the hydroponic channels. It is viable to use nutrient solution recirculation every 8 h, without production losses. The use of brackish water (EC = 4.91 dS m-1) may be an alternative for the hydroponic cultivation of coriander, despite the reduction in production, but without any damage on the visual aspect of the product. Plants grown at the initial and intermediate positions along the hydroponic channels showed higher production.


2019 ◽  
Vol 41 (5) ◽  
Author(s):  
Douglas José Marques ◽  
José Andres Carreño Siqueira ◽  
Hudson Carvalho Bianchini ◽  
Vinicius Mendes Alves

Abstract The objective of this research was to evaluate the production of passion fruit (Passiflora edulis Sims) cultivars in different nutrient solutions, using commercial Bioplant® substrate in slabs system in protected cultivation. A randomized complete block design in a factorial scheme was used with 2 passion fruit cultivars (Araguari and Yellow Master) x 4 nutrient solutions (solution 1, solution 2, solution 3 and solution 4), each plot consisting of 6 plants with 6 replications. Electrical conductivity evaluations in the slabs drained solution started at 15 days after seedling transplantation and the nutrient contents were quantified at the end of the research. In passion fruit, ether extract, crude fiber and crude protein were evaluated. Fruit number, pulp mass, peel thickness and gas exchange were evaluated. It was concluded that the use of nutrient solution 2 in cultivar Yellow Master, with 2.72 dS m-1 electrical conductivity and the use of nutrient solution 4 in cultivar Araguari, with 2.95 dS m-1 electrical conductivity, yielded the largest number of fruits, pulp mass, fruit mass and gas exchange, in slabs system in the protected cultivation of passion fruit.


2018 ◽  
Vol 2 (2) ◽  
pp. 19
Author(s):  
Muchamad Malik ◽  
Aan Burhanuddin

<p><em>Quadrocopter is an aerial vehicle platform that has become very popular among researchers from the past because it has advantages compared to conventional helicopters. The quadrocopter design is very simple and unique but seen from an unstable aerodynamic standpoint. From existing research, researchers have proposed many control system designs for quadrocopter. In this study, the author presents a fuzzy logic controller for quadrocopter. The method in this research is by designing hardware. After that the design for fuzzy controllers. Then the designed fuzzy controller is tested in the Hardware In Loop (HIL) setting. The experimental results and validation of the controller application functions are considered satisfactory and it is concluded that it is possible to stabilize quadrocopter with fuzzy logic controller.</em></p>


Sign in / Sign up

Export Citation Format

Share Document