scholarly journals Biomechanical Analysis of Staples for Epiphysiodesis

2022 ◽  
Vol 12 (2) ◽  
pp. 614
Author(s):  
Frydrýšek Karel ◽  
Čepica Daniel ◽  
Halo Tomáš ◽  
Skoupý Ondřej ◽  
Pleva Leopold ◽  
...  

Limb asymmetry can, and often does, cause various health problems. Blount bone staples (clips) are used to correct such uneven growth. This article analyzes the performance of a biomechanical staple during bone (tibia) growth arrest. The staples considered in this study were made of 1.4441 stainless steel, the model of tibia consisted of two materials representing corticalis and spongiosis. Hooke’s law was used for modeling materials’ behaviors for finite element analysis (FEA). The maxima of stress and total staple displacement were evaluated using the finite element method and verification of the results, along with the determination of the maximum loading (growing) force that the staples are capable of withstanding, was performed experimentally. The presented method can be used to determine the safety and usability of staples for bone growth arrest. According to our results, the design of Blount staples considered in this paper is safe and suitable for orthopedic treatment.

2005 ◽  
Vol 40 (2) ◽  
pp. 151-160 ◽  
Author(s):  
E P Silva ◽  
P M C L Pacheco ◽  
M. A Savi

The determination of residual stresses is an important task in the analysis of the quenching process. Nevertheless, because of the complexity of the phenomenon, many simplifications are usually adopted in the prediction of these stresses for engineering purposes. One of these simplifications is the effect of phase transformation. Many studies analyse residual stresses generated by the quenching process considering a thermoelastoplastic approach, neglecting phase transformation. The present study analyses the effect of austenite-martensite phase transformation during quenching in the determination of residual stresses, comparing two different models: complete (thermoelastoplastic model with austenite-martensite phase transformation) and without phase transformation (thermoelastoplastic model without phase transformation). The finite element method is employed for spatial discretization together with a constitutive model that represents the thermomechanical behaviour of the quenching process. Progressive induction hardening of steel cylinders with semicircular notches is of concern. Numerical simulations show situations where great discrepancies are introduced in the predicted residual stresses if phase transformation is neglected.


2015 ◽  
Vol 226 ◽  
pp. 29-32
Author(s):  
Marcin Basiaga ◽  
Joanna Przondziono

The main purpose of this paper was biomechanical analysis of hip joint endoprosthesis – femur systems by means of the Finite Element Method. During the analysis two endoprostheses with differential geometric features were selected. Geometric models of analysed implants were compiled on the grounds of real models like Merotan and The DePuy Proxima which were chosen from series diamensional. Afterwards the models were discretization and boundary conditions were set. Those boundary conditions with right accuracy copied a phenomena which occurred in real models - the Pauwels model. The field of analysis involved determination of the state of displacements, strains and stresses which were cut down in the of endoprosthesis – bone systems. The analysis that was carried out constitute the basics for optimisation of implant geometry and right selection of material’s mechanical properties to its production.


2005 ◽  
Vol 2 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Zlatko Kolondzovski ◽  
Lidija Petkovska

In the paper a determination of characteristics of a small salient pole synchronous generator (SG) is presented. Machine characteristics are determined via Finite Element Analysis (FEA) and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM).


2020 ◽  
pp. 60-62
Author(s):  
Sangita Show ◽  
Arka Kanti Dey

Numerous techniques to determine stress distribution around the peri-implant bone, for instance photoelastic model, strain gauge analysis, and three-dimensional (3D) finite element analysis have been extensively studied, however finite element analysis still remains the most widely utilized technique. This paper briefly reviews the fundamental concepts, applications pertaining to dental implants, various advantages as well as limitations of finite element analysis. The finite element method not only serves as a significant tool for biomechanical analysis, it also enables to reveal stress within complex structures and analyzing their mechanical properties. Keeping in mind the various limitations of the method further improvements might be made which would help to widen its range of applications in various domains of dental sciences.


1996 ◽  
Vol 24 (4) ◽  
pp. 278-293 ◽  
Author(s):  
A. A. Goldstein

Abstract The finite element method is used to simulate the slow (quasi-static) rolling of a radial truck tire subjected to ground plane tractions. Three conditions are considered, namely, (1) straight free rolling, (2) cornering, and (3) braking. Lateral and longitudinal slip are calculated by analyzing the motion of a moveable road surface relative to the wheel plane. Footprint moments are calculated for the cornering and braking condition. In addition, cornering stiffness, braking stiffness, and aligning stiffness are calculated and compared to measured results. Computational benchmark data is provided. The simulation was performed with the ABAQUS finite element program.


1990 ◽  
Vol 112 (1) ◽  
pp. 138-142 ◽  
Author(s):  
Sui Lin ◽  
Xichen Yu ◽  
Wieliang Dai

The thermal stress of a multi-layer composite of plastic/brittle material was studied by the finite element method. High stress is found to be located on the interfaces between the plastic and the brittle material. 1-D and 2-D approaches for the determination of the temperature distributions in the multi-layer composite were examined. The 1-D approach gives an approximate 80 percent of error in temperature and a maximum of 20 percent of error in thermal stress in comparison with the 2-D approach. This suggests that, for a plastic/brittle composite, a 2-D approach for the determination of the temperature distribution should be taken in order to ensure the validity in the determination of both the temperature and stress distributions.


Author(s):  
Dipak K. Chandiramani ◽  
Suresh K. Nawandar ◽  
Shyam Gopalakrishnan

Various methods have been in use for the determination of stresses at the nozzle-shell junction due to external loads and moments. Some methods evaluate stress in the cylindrical or spherical shell (e.g. WRC 107 now WRC 537) while others evaluate stresses in cylindrical shells and nozzles (e.g. WRC 297). ASME Section VIII Division. 2 specifies use of WRC 107/WRC 297 or Finite Element Analysis (FEA) for determination of stresses at shell-nozzle junctions with external loads and moments on the nozzle. Each method could yield a different result for the same loading condition and geometry and this has been recognized in comparisons made in WRC 297 with WRC 107 and FEA. Further, customized FEA software are also available for this analysis. There still seems to be some confusion in users of these methods regarding selection of method for optimization of design. Users not familiar with Finite Element Method prefer to use calculations based on WRC 107/297. Hang-Sung Lee, et.al. have recently (PVP 2011 – 57407) analyzed nozzle shell junctions using the Finite Element Method, compared their results with calculations to WRC 297 and made recommendations. The work presented in this paper is not an attempt to compare individual stresses obtained by classical versus analytical methods. Instead, an attempt has been made to consolidate the results obtained by the various methods into charts to enable a user to make a preliminary assessment to ascertain under what geometrical conditions the calculations made by each of the above methods would result in overall Code acceptable stresses without the results being either overly conservative or un-conservative. This is particularly relevant to the geometries which use the graphs and charts which have been extrapolated without rigorous theoretical background in the WRC Bulletin 537. The Finite Element Method has been used as the referee method.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Sign in / Sign up

Export Citation Format

Share Document