scholarly journals A Characterization Method for Pavement Structural Condition Assessment based on the Distribution Parameter of the Vehicle Vibration Signal

2022 ◽  
Vol 12 (2) ◽  
pp. 683
Author(s):  
Weiguo Wang ◽  
Shishi Zhou ◽  
Qun Yang

A pavement structural survey plays a vital role in road maintenance and management. This study was intended to explore the feasibility of a non-stop pavement structure assessment method by analyzing the vibration data from a vehicle sensor. In this study, three falling weight deflectometer (FWD) tests and four vehicle vibration tests were conducted on five pavement structures. The FWD test results show that the continuously reinforced composite pavement has a higher structural stiffness than the semi-rigid base asphalt pavement. According to the statistical distribution of vehicle acceleration, a distribution parameter, the peak probability density (PPD), was proposed. The correlation coefficient (−0.722) of the center deflection (D1) and PPD indicates a strong correlation between the two variables. Therefore, PPD is strongly correlated with pavement structural stiffness. This study proposed a novel characterization method for pavement structural conditions based on the distribution parameter of the vehicle vibration signal.

2018 ◽  
Vol 211 ◽  
pp. 06006 ◽  
Author(s):  
Anthimos Georgiadis ◽  
Xiaoyun Gong ◽  
Nicolas Meier

Vibration signal analysis is a common tool to detect bearing condition. Effective methods of vibration signal analysis should extract useful information for bearing condition monitoring and fault diagnosis. Spectral kurtosis (SK) represents one valuable tool for these purposes. The aim of this paper is to study the relationship between bearing clearance and bearing vibration frequencies based on SK method. It also reveals the effect of the bearing clearance on the bearing vibration characteristic frequencies This enables adjustment of bearing clearance in situ, which could significantly affect the performance of the bearings. Furthermore, the application of the proposed method using SK on the measured data offers useful information for predicting bearing clearance change. Bearing vibration data recorded at various clearance settings on a floating and a fixed bearing mounted on a shaft are the basis of this study


2015 ◽  
Vol 724 ◽  
pp. 279-282
Author(s):  
Chun Hua Ren ◽  
Xu Ma ◽  
Ze Ming Li ◽  
Yan Hong Ding

In this paper, the defect sheet was captured coincidentally. According to the defective product’s characteristics, we suspected to be caused by the vertical vibration of the roll. When the rolling speed reached a certain value, the vibration of the fourth stand can be feel. The experiment of the vibration data collection was taken to compare the vibration parameters of rolling operating side with those of drive side by wavelet analysis. The result states that the abnormal vibration signal features can be extracted in a special frequency segment of wavelet decomposition, and the vibration frequency to the roll is confirmed which appeared product defects.


Author(s):  
Aniruddha Mitra ◽  
Sahana Sen

An existing senior level elective course on vibration in Mechanical Engineering Technology program at Georgia Southern University has been modified significantly. Two major components have been added to this course. Those are theoretical topics on preventive maintenance and laboratory experiments. As a part of laboratory experiments, Fast Fourier Transform (FFT) was introduced as a possible tool for vibration analysis for the purposes of machine diagnosis. Utilizing the current laboratory set up for the data acquisition systems, LabView software has been used for FFT analysis of signals from various sources. Four different modules were developed and implemented. The modules are as follows: random variation in acceleration of a toy cart due to roughness of the track and pulley, regular uniform wave signal which is generated by the lateral vibration of a cantilever beam at its natural frequency, signal generated by the imported raw data from other sources (e.g. MATLAB) and vibration signal of a shaft mounted on ball bearings in order to detect the defects in the bearing. Each of these modules is illustrated in this paper with suitable examples and suggested student activities and involvements. The results from FFT analysis have been cross checked using other methods and observations. As a follow up, students have been taken to a local industry where significant amount of emphasis is given to preventive maintenance of machineries by vibration data analysis using FFT. Future possible projects include the analysis of vibration data gathered from actual machine shop. This project opens the scope for greater collaborative effort between local industries and classroom activities.


2021 ◽  
Vol 283 ◽  
pp. 02033
Author(s):  
Ziyi Zhang ◽  
Yu Sun ◽  
Han Xu ◽  
Qiyun Zhu

In recent years, urbanization has developed rapidly, and urban road play a vital role as the premise. Due to the good effectiveness of asphalt pavement, which is more popular in urban road, and road maintenance demands are also increasing. In order to make the maintenance work appropriate, accurate pavement performance evaluation is the premise. This paper collects the data of a road pavement condition in Shanghai and calculates the sub-indexes of each section. We use the entropy weight method to obtain the influence degree of each sub-index. Then we use the revised set pair analysis to construct the comprehensive performance evaluation model of urban road pavement. The analysis shows that compared with the standard method and the set pair analysis, the revised model is more objective, in line with the actual use of the road.


2015 ◽  
Vol 813-814 ◽  
pp. 915-920 ◽  
Author(s):  
A. Eswara Kumar ◽  
M. Naga Raju ◽  
Navuri Karteek ◽  
Daggupati Prakash

The wheel of a vehicle plays a vital role to bear the load applies on it. Generally spokes acts as the supports between the wheel rim and hub. These spokes must have sufficient strength and stiffness to avoid the failure of the wheel. In present days these wheels are made up of aluminum alloy, magnesium alloy and steel. To reduce the weight of the wheel many wheel designs are implemented and applied for different vehicles. In this paper three different wheel designs are chosen, those are inclined spokes, curved spokes and Y shaped spokes made up of Al alloy, Mg alloy and Steel. Static structural analysis subjected to pressure on the wheel rim and free vibrational analyses are performed by using finite element analysis tool Ansys 12. The objective of the present work is to observe the best design which contains higher structural stiffness, specific structural stiffness with lower von mises stresses under static load conditions. It is observed that curve shaped spoke designs are better in for manufacturing of wheel in both static and dynamic point of view.


2012 ◽  
Vol 157-158 ◽  
pp. 123-126 ◽  
Author(s):  
Ning Ding ◽  
Yi Chen Wang ◽  
Ding Tong Zhang ◽  
Yu Xiang Shi ◽  
Jian Shi

Based on the theory of roughness during cylinder grinding and the theory of fuzzy-neural network, a surface roughness intelligent prediction model is developed in this paper. The feed, speed, and the vibration data are the inputs for the model. An accelerometer is used to gather the vibration signal in real time. The model is used in the grinding experiment, and verifies the feasibility of the proposed model.


2020 ◽  
pp. 107754632092566 ◽  
Author(s):  
HongChao Wang ◽  
WenLiao Du

As the key rotating parts in machinery, it is crucial to extract the latent fault features of rolling bearing in machinery condition monitoring to avoid the occurrence of sudden accidents. Unfortunately, the latent fault features are hard to extract by using the traditional signal processing method such as envelope demodulation because the effect of envelope demodulation is influenced strongly by the degree of background noise. Sparse decomposition, as a new promising method being able of capturing the latent fault feature components buried in the vibration signal, has attracted a lot of attentions, especially the predefined dictionary-based sparse decomposition methods. However, the feature extraction effect of the predefined dictionary-based sparse decomposition depends on whether the prior knowledge of the analyzed signal is sufficient or not. To overcome the above problems, a feature extraction method of latent fault components of rolling bearing based on self-learned sparse atomics and frequency band entropy is proposed in the article. First, a self-learned sparse atomics method is applied on the early weak vibration signal of rolling bearing and several self-learned atomics are obtained. Then, the self-learned atomics owing bigger kurtosis values are selected and used to reconstruct the vibration signal to remove the other interference signals. Subsequently, the frequency band entropy method is used to analyze the reconstructed vibration signal, and the optimal parameter of band-pass filter could be calculated. At last, the reconstructed vibration signal is filtered using the optimal band-pass filter, envelope demodulation on the filtered signal is applied, and better fault feature is extracted. The feasibility and effectiveness of the proposed method are verified through the vibration data of the accelerated fatigue life test of rolling bearing. Besides, the analysis results of the same vibration data using Autogram and spectral kurtosis methods are also presented to highlight the superiority of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Danhui Dan ◽  
Jiongxin Gong ◽  
Yiming Zhao

We propose a 2D representation in the frequency-decay factor plane of an arbitrary real-world vibration signal. The signal is expressed as the sum of a decayed-attenuation sine term modulated by an amplitude function and a noise residue. We extend the combined approach of Capon estimation and amplitude and phase estimation (CAPES) to damped real vibration signals (DR-CAPES). In the proposed DR-CAPES method, the high-resolution amplitude and phase are estimated simultaneously for both angular frequency and decay factor grids. The performance of the proposed approach is tested numerically with noisy vibration data. Results show that the DR-CAPES method has an excellent frequency resolution, which helps to overcome difficulties in spectrum estimation when vibration modes are very close, and a small bias, which makes it suitable for obtaining accurate amplitude spectrums. The results also indicate that the proposed method can accurately estimate the amplitude spectrum with the use of averaging and denoising processes.


2014 ◽  
Vol 940 ◽  
pp. 136-139
Author(s):  
Ren Bin Zhou ◽  
Yong Feng Zhang ◽  
Jie Min Yang ◽  
Feng Ling

As a universal component connection and power transmission gear box, is widely used in the modern industrial equipment, but also an easy failure parts, has a great influence on the running state of the working performance of the whole machine. This paper first analyzes the gear box fault form and characteristics, the gear box fault diagnosis method based on vibration signal analysis, and analysis of the vibration signal processing method for gear vibration signal analysis in time domain, including parameters, resonance demodulation method and cepstrum analysis method. Then using Visual C + + language and data acquisition card for real-time acquisition of gearbox vibration data software, including parameter setting, data acquisition module, signal real-time display module and data storage module. The data acquisition program is developed, the actual acquisition of gearbox vibration data of gear fault and bearing fault, and analyzed.


2010 ◽  
Vol 139-141 ◽  
pp. 1718-1722
Author(s):  
Jian Li ◽  
Chun Liang Zhang ◽  
Xia Yue

The partitioned iterated function systems (PIFS) were introduced into the compression of vibration signal. The actual vibration data of ZLH600-2 pump were adopted to verify the performance of PIFS. Also the compression ratios and the computation time were good, but the spectrum and amplitude, as important performances, were deformed after compression. If the concerned frequency of users was significantly lower than the sampling frequency and the required compression ratios was not more than 2, the compression using PIFS in vibration signal of rotating machinery was comfortable. Otherwise, the information loss in the compression could not be ignored. The decoded signals with the different compression parameters were listed in the paper and it was a meaningful exploration of the IFS on diagnosis and laid the foundation for further research.


Sign in / Sign up

Export Citation Format

Share Document