scholarly journals Achieving Electrochemical-Sustainable-Based Solutions for Monitoring and Treating Hydroxychloroquine in Real Water Matrix

2022 ◽  
Vol 12 (2) ◽  
pp. 699
Author(s):  
Danyelle Medeiros de Araújo ◽  
Elisama V. Dos Santos ◽  
Carlos A. Martínez-Huitle ◽  
Achille De Battisti

Hydroxychloroquine (HCQ) has been extensively consumed due to the Coronavirus (COVID-19) pandemic. Therefore, it is increasingly found in different water matrices. For this reason, the concentration of HCQ in water should be monitored and the treatment of contaminated water matrices with HCQ is a key issue to overcome immediately. Thus, in this study, the development of technologies and smart water solutions to reach the Sustainable Development Goal 6 (SDG6) is the main objective. To do that, the integration of electrochemical technologies for their environmental application on HCQ detection, quantification and degradation was performed. Firstly, an electrochemical cork-graphite sensor was prepared to identify/quantify HCQ in river water matrices by differential pulse voltammetric (DPV) method. Subsequently, an HCQ-polluted river water sample was electrochemically treated with BDD electrode by applying 15, 30 and 45 mA cm−2. The HCQ decay and organic matter removal was monitored by DPV with composite sensor and chemical oxygen demand (COD) measurements, respectively. Results clearly confirmed that, on the one hand, the cork-graphite sensor exhibited good current response to quantify of HCQ in the river water matrix, with limit of detection and quantification of 1.46 mg L−1 (≈3.36 µM) and 4.42 mg L−1 (≈10.19 µM), respectively. On the other hand, the electrochemical oxidation (EO) efficiently removed HCQ from real river water sample using BDD electrodes. Complete HCQ removal was achieved at all applied current densities; whereas in terms of COD, significant removals (68%, 71% and 84% at 15, 30 and 45 mA cm−2, respectively) were achieved. Based on the achieved results, the offline integration of electrochemical SDG6 technologies in order to monitor and remove HCQ is an efficient and effective strategy.

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4990
Author(s):  
Danyelle M. de Araújo ◽  
Suelya da Silva S. M. Paiva ◽  
João Miller M. Henrique ◽  
Carlos A. Martínez-Huitle ◽  
Elisama V. Dos Santos

Hydroxychloroquine (HCQ), a derivative of 4-aminoquinolone, is prescribed as an antimalarial prevention drug and to treat diseases such as rheumatoid arthritis, and systemic lupus erythematosus. Recently, Coronavirus (COVID-19) treatment was authorized by national and international medical organizations by chloroquine and hydroxychloroquine in certain hospitalized patients. However, it is considered as an unproven hypothesis for treating COVID-19 which even itself must be investigated. Consequently, the high risk of natural water contamination due to the large production and utilization of HCQ is a key issue to overcome urgently. In fact, in Brazil, the COVID-19 kit (hydroxychloroquine and/or ivermectin) has been indicated as pre-treatment, and consequently, several people have used these drugs, for longer periods, converting them in emerging water pollutants when these are excreted and released to aquatic environments. For this reason, the development of tools for monitoring HCQ concentration in water and the treatment of polluted effluents is needed to minimize its hazardous effects. Then, in this study, an electrochemical measuring device for its environmental application on HCQ control was developed. A raw cork–graphite electrochemical sensor was prepared and a simple differential pulse voltammetric (DPV) method was used for the quantitative determination of HCQ. Results indicated that the electrochemical device exhibited a clear current response, allowing one to quantify the analyte in the 5–65 µM range. The effectiveness of the electrochemical sensor was tested in different water matrices (in synthetic and real) and lower HCQ concentrations were detected. When comparing electrochemical determinations and spectrophotometric measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of this sensor in different environmental applications.


2019 ◽  
Vol 14 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Girish Tigari ◽  
J.G. Manjunatha ◽  
D.K. Ravishankar ◽  
G. Siddaraju

An electrogenerated Polyarginine modified carbon paste electrode (PAMCPE) was fabricated through a simple electropolymerization procedure. The devised electrode was characterized by cyclic voltammetry (CV) and Field Emission Scanning Electron Microscopy (FESEM). This electrode was utilized for electrocatalytic estimation of Riboflavin (RF) and its instantaneous resolution with ascorbic acid (AA) and folic acid (FA) in phosphate buffer solution (PBS) of pH 6.0 by differential pulse voltammetry (DPV). It was observed to be a very responsive electrode for the electrochemical detection and quantification of RF. It was revealed that PAMCPE generates higher current response towards RF contrast to the bare carbon paste electrode (BCPE). Under optimized condition, the RF oxidation current values were linearly reliant on the RF concentration increment with a limit of detection (LOD) of 9.3·10-8 M using DPV. The stable PAMCPE was effectively applied for estimation of RF in B-complex pill and complex human blood serum samples.


2015 ◽  
Vol 67 (2) ◽  
pp. 685-693 ◽  
Author(s):  
Xia Yang ◽  
Siliang Huang ◽  
Yubian Zhang ◽  
Xiaoqiang Zhang

A fungal isolate (ZZS4408) was obtained from a river water sample in Henan, China, and identified as a member of Neurospora brevispora, a rare species of Neurospora based on its morphological characteristics and ribosomal DNA internal transcribed spacer (rDNA-ITS) sequence. The temperatures suitable for growth of the isolate were 28-37?C with 31?C as the optimum. The growth rates of hyphal tips were 19.1-42.5 (av. 31.9) ?m min-1 at 32?C. The pH suitable for vegetative growth ranged from 5 to 7, with pH 5.5 as the optimum. The heterodisaccharides (sucrose and lactose) and D-alanine were found to be most favorable for vegetative growth of the isolate, as carbon and nitrogen sources, respectively. The vegetative growth of the isolate was more significantly influenced by nitrogen sources compared to carbon sources. N. brevispora could be considered a desirable fungal species for morphodifferentiation studies due to its rapid growth rates under favorable conditions.


2018 ◽  
Vol 624 ◽  
pp. 1072-1081 ◽  
Author(s):  
Muhammad Arslan Kamal Hashmi ◽  
Beate I. Escher ◽  
Martin Krauss ◽  
Ivana Teodorovic ◽  
Werner Brack

2000 ◽  
Vol 10 (01n02) ◽  
pp. 57-62 ◽  
Author(s):  
M. Tsuji ◽  
K. Kawasaki ◽  
T. Niizeki ◽  
M. Saitou ◽  
T. Hattori

Transition metal elements and others in river water sample supplied by The Japan Society for Analytical Chemistry (JSAC) were determined by PIXE using 2.5 MeV proton beam at the Tokyo Institute of Technology Van de Graaff Laboratory. The relative detection efficiency for each X-ray of element and its recovery were studied in two methods: "Drop and Dry" and "Concentration" methods. Ten elements ( V , Cr , Mn , Fe , Ni , Cu , Zn , As , Se and Pb ) were determined, being in good agreement with the values certified by JSAC except for Mn . Intensity of K α X-ray of As and L α, X-ray of Pb nearly close to each other could be successfully evaluated using isolated L β X-ray of Pb . Mn was insufficiently recovered to give lower content than the certified value in the present conditions. V that is not listed in the certificate was found to show good agreement with that reported previously. Concentration method using sodium dibenzyldithiocarbamate only could be successfully employed for collecting these elements.


Author(s):  
Sultan Abdulkadir ◽  
Monika Chhimwal ◽  
Rajeev Kumar Srivastava

Abstract The purpose of this research was to evaluate the potential of plant-immobilized bacterial cells synergism for enhanced remediation of polluted river water. The polluted river water sample was collected from Kalyani river, Uttarakhand, India and characterized by high concentration of COD (1010 mg/l), BOD (230 mg/l), NO3−-N (30 mg/l), PO43−-P (48.9 mg/l), and Pb(1.028 mg/l). This water sample was treated on a lab scale with immobilized bacterial cells and Epipremnum aureum in various treatment setups. The treatment system 3 using a combination of immobilized bacterial cells and Epipremnum aureum had the highest pollutant removal efficiency of all the treatment setups tested. At 96 hours, the total COD, BOD, NO3−-N, PO43−-P and Pb contents of polluted river water sample were reduced to 60 mg/l, 20 mg/l, 2.4 mg/l, 11.7 mg/l, and 0.065 mg/l, respectively. Based on the findings, it is possible to conclude that utilizing plant-immobilized bacterial cell synergism is an environmentally friendly and cost-effective approach for enhanced remediation and rejuvenation of polluted river water. Furthermore, a field-scale application of plant-immobilized bacterial cell synergism via floating wetland construction for on-site treatment of contaminated water on the Kalyani river is recommended.


1981 ◽  
Vol 27 (1) ◽  
pp. 144-147 ◽  
Author(s):  
W. Reichardt

Certain norcarotenoids, which have recently been found as excretion products of freshwater cyanobacteria and algae, are potent inhibitors of different metabolic functions in heterotrophic bacteria. 6-Methylhept-5-en-2-one showed the strongest effects and acted as a noncompetitive inhibitor of both glucose uptake and respiration by aquatic isolates of Chromobacterium lividum and Arthrobacter sp. Inhibition of the heterotrophic potential of glucose uptake by 6-methylhept-5-en-2-one was characterized by considerably lower inhibitor constants for bacterial cultures (Ki = 0.4 and 1.6 μM) than for a river water sample (Ki = 186.0 μM).


Sign in / Sign up

Export Citation Format

Share Document