scholarly journals Research on Key Factors of Sealing Performance of Combined Sealing Ring

2022 ◽  
Vol 12 (2) ◽  
pp. 714
Author(s):  
Heming Cheng ◽  
Xinyuan Chen ◽  
Xiaolan Chen ◽  
Hucheng Liu

In this study, the mechanical properties of a combined seal ring under different loads were numerically calculated using ANSYS. The effect of the working pressure and pre-compression ratio of a rubber O-ring on the contact stress of the combined seal ring was studied. The influence of the wear ring’s chamfer, thickness, and width on the contact stress and contact force of the combined seal ring was analyzed. Studies have shown that it is particularly important to select a compression ratio that is suitable for the working conditions. Under the same conditions of working pressure and compression ratio, upon increasing the wear ring chamfer, the contact pressure is decreased due to the decreasing contact bandwidth between the wear ring and the cylinder wall. This has little effect on the contact stress of the combined seal ring as well as the contact force, while the width of the wear ring is proportional to the latter.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Chuanjun Han ◽  
Han Zhang ◽  
Jie Zhang

In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficient, and material parameters on sealing performances were discussed. The results show that von Mises stress of the biomimetic sealing ring distributed symmetrically in no-pressure static sealing. The maximum von Mises stress appears on the second bulge of the inner side. High contact stress concentrates on left bulges. Von Mises stress distribution becomes uneven under medium pressure. Both von Mises stress and contact stress increase when precompression, medium pressure, and rubber hardness increase in static sealing. Biomimetic ring can avoid rolling and distortion in reciprocating dynamic seal, and its working life is much longer than O-ring and rectangular ring. The maximum von Mises stress and contact stress increase with the precompression, medium pressure, rubber hardness, and friction coefficient in reciprocating dynamic seal.


Author(s):  
Chao Yang ◽  
Hu Hui ◽  
Song Huang

Bursting disc overpressure relief device services as the last safety barrier in preventing catastrophic overpressure of the pressure vessel. The design of ultra-high pressure bursting disc device is a tough engineering issue as it requires both strength and sealing reliability under ultra-high working pressure. In this paper, a novel ultra-high pressure bursting disc device is proposed as well as the sealing structure is designed. Firstly, the novel bursting disc device structure is introduced. Then, the wall thickness of the sealing ring is designed based on elastoplastic mechanical analysis. Numerical simulation is also conducted to investigate the mechanical and sealing performance theoretically. At last, the strength and the reliability of the sealing performance is proved by hydraulic burst test.


2014 ◽  
Vol 635-637 ◽  
pp. 541-544
Author(s):  
Hai Ning Li ◽  
Dan Li ◽  
Xin Xin

Abstract:In this paper ,the finite element model of the lei-ring was established in ANSYS software,the sealing performance of hydraulic support column piston was analyzed.Also,the numerical simulation analysis was made of the impact of column working pressure on the sealing performance,and a series of the integrated equivalent stress and contact pressure images of sealing ring when working were got. From those images,the location most prone to failure can be concluded.All of work can provide a theoretical reference for the design and use of drum sealing ring used on hydraulic support upright column.


2013 ◽  
Vol 753-755 ◽  
pp. 1133-1136
Author(s):  
Ping Lu ◽  
Su Wei Dai

In order to understand its performance before seal ring putting into use, the paper selects the commonly used polyurethane Y-sealing ring, establishes a model of Y-ring using finite element analysis software and simulates the work environment of seal ring. The deformation and stress of Y-ring under various working pressure can be obtained to summary the deformation and stress rules, as well as the possible crack positions of Y-ring.


Mechanika ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 321-326
Author(s):  
Yang Hu ◽  
Chuanjun HAN ◽  
Jie ZHANG ◽  
Zixuan LUO

In the process of gas charging and discharging of gas cylinder, the fluid pressure fluctuates causing fretting wear of rubber sealing ring, which affects the sealing performance. The model of O-ring that installed at the mouth of the gas cylinder was established to study the fretting wear in the static seal. Effects of fluid pressure, compression ratio, friction coefficient and temperature on the fretting wear of the O-ring were considered. The results show that the fretting wear of O-ring can be divided into non-contact region, slip region and sticky region. In the static seal, the compression ratio and friction coefficient are the main factors affecting the fretting wear. The sealing performance is greatly influenced on the compression ratio and it is less affected by the temperature. The junction of slip region and sticky region has the greatest probability of seal failure.


Author(s):  
Dibo Pan ◽  
Haijun Xu ◽  
Bolong Liu ◽  
Congnan Yang

The sealing characteristics of an annular power cylinder based on the Twin-rotor piston engine are studied, which provides a theoretical foundation for the sealing design of a new high-power density piston engine. In this paper, the basis thermodynamic realization process of an annular power cylinder is presented. The Runge Kutta equation is used to establish the coupled leakage model of adjacent working chambers under annular piston seal. And the sealing performance of the annular power cylinder is analyzed in detail. Moreover, the influence of rotor speed and compression ratio on the sealing characteristics and leakage is studied. Finally, some tests are carried out to verify the sealing principle and simulation results, which verifies the theoretical basis of simulation analysis. Results show that there are double pressure peaks in the leakage chamber between two working chambers, which is beneficial to reduce the leakage rate. Besides, increasing the speed and decreasing the compression ratio can help to reduce gas leakage. Furthermore, the effects of speed variation on the leakage are only significant when rotating at low speed. Changing the compression ratio has a greater effect on the slope of the leakage curve at a low compression ratio, and the lower the compression ratio, the better the sealing effect.


2021 ◽  
pp. 036354652110282
Author(s):  
Niv Marom ◽  
Hamidreza Jahandar ◽  
Thomas J. Fraychineaud ◽  
Zaid A. Zayyad ◽  
Hervé Ouanezar ◽  
...  

Background: There is concern that utilization of lateral extra-articular tenodesis (LET) in conjunction with anterior cruciate ligament (ACL) reconstruction (ACLR) may disturb lateral compartment contact mechanics and contribute to joint degeneration. Hypothesis: ACLR augmented with LET will alter lateral compartment contact mechanics in response to simulated pivoting maneuvers. Study Design: Controlled laboratory study. Methods: Loads simulating a pivot shift were applied to 7 cadaveric knees (4 male; mean age, 39 ± 12 years; range, 28-54 years) using a robotic manipulator. Each knee was tested with the ACL intact, sectioned, reconstructed (via patellar tendon autograft), and, finally, after augmenting ACLR with LET (using a modified Lemaire technique) in the presence of a sectioned anterolateral ligament and Kaplan fibers. Lateral compartment contact mechanics were measured using a contact stress transducer. Outcome measures were anteroposterior location of the center of contact stress (CCS), contact force from anterior to posterior, and peak and mean contact stress. Results: On average, augmenting ACLR with LET shifted the lateral compartment CCS anteriorly compared with the intact knee and compared with ACLR in isolation by a maximum of 5.4 ± 2.3 mm ( P < .001) and 6.0 ± 2.6 mm ( P < .001), respectively. ACLR augmented with LET also increased contact force anteriorly on the lateral tibial plateau compared with the intact knee and compared with isolated ACLR by a maximum of 12 ± 6 N ( P = .001) and 17 ± 10 N ( P = .002), respectively. Compared with ACLR in isolation, ACLR augmented with LET increased peak and mean lateral compartment contact stress by 0.7 ± 0.5 MPa ( P = .005) and by 0.17 ± 0.12 ( P = .006), respectively, at 15° of flexion. Conclusion: Under simulated pivoting loads, adding LET to ACLR anteriorized the CCS on the lateral tibial plateau, thereby increasing contact force anteriorly. Compared with ACLR in isolation, ACLR augmented with LET increased peak and mean lateral compartment contact stress at 15° of flexion. Clinical Relevance: The clinical and biological effect of increased anterior loading of the lateral compartment after LET merits further investigation. The ability of LET to anteriorize contact stress on the lateral compartment may be useful in knees with passive anterior subluxation of the lateral tibia.


2014 ◽  
Vol 971-973 ◽  
pp. 380-389
Author(s):  
Jian Ning Wang ◽  
Gang Wu ◽  
Wei Yi Xie ◽  
Xin De Han ◽  
Ming Chao Gang

Abstract: The packer rubber stress in the bottom hole is more complex. Based on constitutive model of the packer rubber material, this paper determines such parameters as model constants, Poisson's ratio of rubber materials and elastic modulus by using experimental method, to build up the finite element model of center tube-rubber cylinder-casing for the purpose of stress analysis. Finally, the distribution regularity of rubber cylinder-casing contact stress and packer setting travel distance with varying loads is concluded. The results can provide the theoretical basis for further analysis of packer rubber sealing performance.


Author(s):  
Sherif Mohareb ◽  
Arndt Goldack ◽  
Mike Schlaich

Cable-stayed and extra-dosed bridges are today widely used bridge types. Recently, saddles have been used to deviate strands of cables in the pylons. Up to now the mechanics of strands on saddles are not well understood. It was found, that typical longitudinal contact stress distributions between strand and saddle show a strong nonlinearity and a high peak value around the detachment point, where the strand meets the saddle. This paper presents a procedure to analyse the longitudinal contact stress distribution obtained by FEM calculations: This contact stress can be idealised as a constant contact stress according to the Barlow's formula and a contact force at the detachment point due to the flexural rigidity of the bent tension elements. An analytical model is provided to verify this contact force. Finally, a formula is presented to calculate the maximum contact stress. This study provides the basis for further research on saddle design and fatigue of strands.


Author(s):  
Qian Cheng ◽  
Yinshui Liu ◽  
Zhenyao Wang ◽  
Defa Wu ◽  
Yunxiang Ma

For ultrahigh-pressure piston pumps, in the reciprocating action of the piston, the fretting between the static face seal and the mating surface occurs with the change of the pressure in the piston chamber. This phenomenon will seriously affect the service life of the seal ring and lead to the failure of the pump. However, the failure of static seals used to seal ultrahigh-pressures is usually studied from the directions of shear, stress, or rubber material. These studies cannot explain the failure phenomenon of the sealing ring found in our experiment. This paper analyzed the failure of the face seal ring in a piston pump with a maximum pressure of 120 MPa. A two-dimensional axisymmetric finite element model was established based on the Mooney-Rivlin constitutive relation of the rubber material, and the fretting conditions of the sealing ring were analyzed. Combined with the wear scars observed by the scanning electron microscope the face seal ring’s dynamic failure mechanism on the ultrahigh-pressure piston pump was determined. A better sealing scheme was proposed and verified by the duration test of the pump, which provided a basis for the design of the sealing of the ultrahigh-pressure fluid with high-frequency fluctuations.


Sign in / Sign up

Export Citation Format

Share Document