scholarly journals A Review of the Synthesis and Applications of Polymer–Nanoclay Composites

2018 ◽  
Vol 8 (9) ◽  
pp. 1696 ◽  
Author(s):  
Feng Guo ◽  
Saman Aryana ◽  
Yinghui Han ◽  
Yunpeng Jiao

Recent advancements in material technologies have promoted the development of various preparation strategies and applications of novel polymer–nanoclay composites. Innovative synthesis pathways have resulted in novel polymer–nanoclay composites with improved properties, which have been successfully incorporated in diverse fields such as aerospace, automobile, construction, petroleum, biomedical and wastewater treatment. These composites are recognized as promising advanced materials due to their superior properties, such as enhanced density, strength, relatively large surface areas, high elastic modulus, flame retardancy, and thermomechanical/optoelectronic/magnetic properties. The primary focus of this review is to deliver an up-to-date overview of polymer–nanoclay composites along with their synthesis routes and applications. The discussion highlights potential future directions for this emerging field of research.

2018 ◽  
Vol 78 (1) ◽  
pp. 31-36 ◽  
Author(s):  
A. L. Hawley ◽  
H. J. Fallowfield

Abstract Attenuation of sunlight in wastewater treatment ponds reduces the depth of the water exposed to disinfecting irradiances. Shallow pond depth with paddlewheel rotation increases exposure of pathogens to sunlight in high rate algal ponds. Generation of thin films, using pond walls as inclined planes, may increase inactivation of pathogens by increasing sunlight exposure. The performance of a laboratory based model system incorporating an inclined plane (IP) was evaluated. F-RNA bacteriophage, in tap water or wastewater, was exposed to sunlight only on the IP with the bulk water incubated in the dark. MS2 inactivation was significantly higher when the IP was present (P < 0.05) with a 63% increase observed. Prolonged exposure increased MS2 die-off irrespective of IP presence. Versatility of the IP was also demonstrated with faster inactivation observed in both optically clear tap water and wastewaters. IPs of different surface areas produced similar inactivation rates when operated at similar hydraulic loading rates regardless of slope length.


Author(s):  
Elena Ruíz

This chapter offers an account of central issues and themes in feminist philosophical engagements with postcolonial and decolonial theories, reflection on examples of important contributions to this discussion, and a discussion of current and future directions in anti-colonial feminist philosophy. It focuses on the specific contexts, issues, and lifeworld concerns that ground anti-colonial feminisms in different regions and provides nonfoundational histories and definitions for the purposes of resisting philosophical appropriations of anti-colonial feminisms. It argues that to understand what is postcolonial or decolonial about feminisms requires a focus on women’s material and historical contexts rather than a primary focus on academic genealogies of concepts.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2554 ◽  
Author(s):  
Mohammad Reza Zamani Kouhpanji ◽  
Bethanie J. H. Stadler

The remarkable multimodal functionalities of magnetic nanoparticles, conferred by their size and morphology, are very important in resolving challenges slowing the progression of nanobiotechnology. The rapid and revolutionary expansion of magnetic nanoparticles in nanobiotechnology, especially in nanomedicine and therapeutics, demands an overview of the current state of the art for synthesizing and characterizing magnetic nanoparticles. In this review, we explain the synthesis routes for tailoring the size, morphology, composition, and magnetic properties of the magnetic nanoparticles. The pros and cons of the most popularly used characterization techniques for determining the aforementioned parameters, with particular focus on nanomedicine and biosensing applications, are discussed. Moreover, we provide numerous biomedical applications and highlight their challenges and requirements that must be met using the magnetic nanoparticles to achieve the most effective outcomes. Finally, we conclude this review by providing an insight towards resolving the persisting challenges and the future directions. This review should be an excellent source of information for beginners in this field who are looking for a groundbreaking start but they have been overwhelmed by the volume of literature.


2008 ◽  
Vol 55-57 ◽  
pp. 617-620 ◽  
Author(s):  
R. Tassanapayak ◽  
Rathanawan Magaraphan ◽  
H. Manuspiya

A wide variety of toxic metals and organic chemicals are discharged to the environment as industrial or laboratory wastes, causing serious water, air, and soil pollution. One of the interesting materials for using as the adsorbents to adsorb these pollutants in wastewater treatment is porous clay heterostructures (PCHs). These porous materials are obtained by the surfactant-directed assembly of mesostructured silica within clay layers. In the present work, the PCHs were synthesized within the galleries of Na-bentonite clay by the polymerization of tetraethoxysilane (TEOS) in surfactant templates (cetyltrimethylammonium ion and dodecylamine). These PCHs were functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) to obtain the MP-PCH utilizing as heavy metal adsorbent. According to N2 adsorption-desorption data, the results show that PCH has surface areas of 549.7 m2/g, an average pore diameter in the supermicropore to small mesopore range of 3.16 nm, and a pore volume of 0.45 cc/g, while MP-PCH shows pore parameters of 488.7 m2/g, 3.28 nm, and 0.48 cc/g, respectively. Moreover, the MP-PCH was investigated the adsorption properties which concerned with their function as adsorbents for aqueous solution. The results show that the adsorption capacity of MP-PCH was 0.22, 0.24, 0.50 , 0.48 and 0.11 mmol/g for Cd, Cu, Mn, Ni and Pb, respectively. They point out the potential for utilizing as the heavy metal adsorbents in wastewater treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Hyung-Ju Kim ◽  
Hee-Chul Yang ◽  
Dong-Yong Chung ◽  
In-Hwan Yang ◽  
Yun Jung Choi ◽  
...  

Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2separation.


Author(s):  
Xiaolan Ai ◽  
Curtis Orkin ◽  
Randy Kruse

Increasing power density is an on-going objective for engineers of fixed wing and rotary wing aircraft. The powertrain system is one of the largest contributors to the total mass of the aircraft and the geartrain is the largest contributor to the mass of the powertrain system. As such, the geartrain becomes the primary focus of many power density studies and is the focus of this paper. Epicyclic geartrains are known to provide high power density and have become the geartrain of choice for the main power flow in virtually all aircraft designs. This paper presents a unique compound planetary design targeting a helicopter main gearbox transmission application. The design significantly improves power density through its innovative planet gear load-sharing configuration along with the utilization of high-performance materials for gears and bearings. Design studies were conducted comparing the power density of this new design to a baseline gearbox design. The results of these studies demonstrate an estimated 38% power density improvement over the baseline configuration. Of the total improvement, 86% is attributed to the novel load-sharing configuration while 14% is attributed to utilization of advanced materials and processes.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 137
Author(s):  
Elena N. Sheftel ◽  
Valentin A. Tedzhetov ◽  
Eugene V. Harin ◽  
Philipp V. Kiryukhantsev-Korneev ◽  
Galina S. Usmanova ◽  
...  

The paper presents results of investigation of Fe65.3–100Zr34.7–0N7.5–0 films prepared by dc magnetron deposition on glass substrates and subsequent 1-hour annealing at temperatures of 300–600 °C. The influence of the chemical and phase compositions and structure of the films, which were studied by TEM, SEM, XRD, and GDOES, on their mechanical properties determined by nanoindentation and static magnetic properties measured by VSM method is analyzed. The studied films exhibit the hardness within a range of 14–21 GPa, low elastic modulus (the value can reach 156 Gpa), and an elastic recovery of 55–83%. It was shown that the films are strong ferromagnets with the high saturation induction Bs (up to 2.1 T) and low coercive field Hc (as low as 40 A/m). The correlations between the magnetic and mechanical properties, on one hand, and the chemical composition of the films, their phase, and structural states as well, on the other hand, are discussed.


Sign in / Sign up

Export Citation Format

Share Document