scholarly journals Effect of Surface Mass Loading on Geodetic GPS Observations

2018 ◽  
Vol 8 (10) ◽  
pp. 1851 ◽  
Author(s):  
Zhen Li ◽  
Jianping Yue ◽  
Jiyuan Hu ◽  
Yunfei Xiang ◽  
Jian Chen ◽  
...  

We investigated the effect of mass loading (atmospheric, oceanic and hydrological loading (AOH)) on Global Positioning System (GPS) height time series from 30 GPS stations in the Eurasian plate. Wavelet coherence (WTC) was employed to inspect the correlation and the time-variable relative phase between the two signals in the time–frequency domain. The results of the WTC-based semblance analysis indicated that the annual fluctuations in the two signals for most sites are physically related. The phase asynchrony at the annual time scale between GPS heights and AOH displacements indicated that the annual oscillation in GPS heights is due to a combination of mass loading signals and systematic errors (AOH modelling errors, geophysical effects and/or GPS system errors). Moreover, we discuss the impacts of AOH corrections on GPS noise estimation. The results showed that not all sites have an improved velocity uncertainty due to the increased amplitude of noise and/or the decreased spectral index after AOH corrections. Therefore, the posterior mass loading model correction is potentially feasible but not sufficient.

2017 ◽  
Author(s):  
Peter Clarke ◽  
David Lavallee ◽  
Geoffrey Blewitt ◽  
Tonie van Dam

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 735
Author(s):  
Xuhui He ◽  
Kehui Yu ◽  
Chenzhi Cai ◽  
Yunfeng Zou ◽  
Xiaojie Zhu

This paper focuses on the dynamic responses of a metro train–bridge system under train-braking. Experiments were performed on the elevated Metro Line 21 of Guangzhou (China). A continuous, three-span, rigid-frame bridge (42 m + 65 m + 42 m) and a standard B-type metro train were selected. The acceleration signals were measured at the center-points of the main span and one side-span, and the acceleration signals of the car body and the bogie frame were measured simultaneously. The train–bridge system’s vibration characteristics and any correlations with time and frequency were investigated. The Choi–Williams distribution method and wavelet coherence were introduced to analyze the obtained acceleration signals of the metro train–bridge system. The results showed that the Choi–Williams distribution provided a more explicit understanding of the time–frequency domain. The correlations between different parts of the bridge and the train–bridge system under braking conditions were revealed. The present study provides a series of measured dynamic responses of the metro train–bridge system under train-braking, which could be used as a reference in further investigations.


2020 ◽  
Vol 12 (5) ◽  
pp. 751
Author(s):  
Weijie Tan ◽  
Junping Chen ◽  
Danan Dong ◽  
Weijing Qu ◽  
Xueqing Xu

Common mode error (CME) in Chuandian region of China is derived from 6-year continuous GPS time series and is identified by principal component analysis (PCA) method. It is revealed that the temporal behavior of the CME is not purely random, and contains unmodeled signals such as nonseasonal mass loadings. Its spatial distribution is quite uniform for all GPS sites in the region, and the first principal component, uniformly distributed in the region, has a spatial response of more than 70%. To further explore the potential contributors of CME, daily atmospheric mass loading and soil moisture mass loading effects are evaluated. Our results show that ~15% of CME can be explained by these daily surface mass loadings. The power spectral analysis is used to assess the CME. After removing atmospheric and soil moisture loadings from the CME, the power of the CME reduces in a wide range of frequencies. We also investigate the contribution of CME in GPS filtered residuals time series and it shows the Root Mean Squares (RMSs) of GPS time series are reduced by applying of the mass loading corrections in CME. These comparison results demonstrate that daily atmosphere pressure and the soil moisture mass loadings are a part of contributors to the CME in Chuandian region of China.


2018 ◽  
Vol 29 (11) ◽  
pp. 1850109 ◽  
Author(s):  
Emrah Oral ◽  
Gazanfer Unal

This leading primary study is about modeling multifractal wavelet scale time series data using multiple wavelet coherence (MWC), continuous wavelet transform (CWT) and multifractal detrended fluctuation analysis (MFDFA) and forecasting with vector autoregressive fractionally integrated moving average (VARFIMA) model. The data is acquired from Yahoo Finances!, which is composed of 1671 daily stock market of eastern (NIKKEI, TAIEX, KOPSI) and western (SP500, FTSE, DAX) markets. Once the co-movement dependencies on time-frequency space are determined with MWC, the coherent data is extracted out of raw data at a certain scale by using CWT. The multifractal behavior of the extracted series is verified by MFDFA and its local Hurst exponents have been calculated obtaining root mean square of residuals at each scale. This inter-calculated fluctuation function time series has been re-scaled and used to estimate the process with VARFIMA model and forecasted accordingly. The results have shown that the direction of price change is determined without difficulty and the efficiency of forecasting has been substantially increased using highly correlated multifractal wavelet scale time series data.


2004 ◽  
Vol 11 (5/6) ◽  
pp. 561-566 ◽  
Author(s):  
A. Grinsted ◽  
J. C. Moore ◽  
S. Jevrejeva

Abstract. Many scientists have made use of the wavelet method in analyzing time series, often using popular free software. However, at present there are no similar easy to use wavelet packages for analyzing two time series together. We discuss the cross wavelet transform and wavelet coherence for examining relationships in time frequency space between two time series. We demonstrate how phase angle statistics can be used to gain confidence in causal relationships and test mechanistic models of physical relationships between the time series. As an example of typical data where such analyses have proven useful, we apply the methods to the Arctic Oscillation index and the Baltic maximum sea ice extent record. Monte Carlo methods are used to assess the statistical significance against red noise backgrounds. A software package has been developed that allows users to perform the cross wavelet transform and wavelet coherence (www.pol.ac.uk/home/research/waveletcoherence/).


2017 ◽  
Vol 04 (04) ◽  
pp. 1750040 ◽  
Author(s):  
Emrah Oral ◽  
Gazanfer Unal

In this paper, dynamic four-dimensional (4D) correlation of eastern and western markets is analyzed. A wavelet-based scale-by-scale analysis method has been introduced to model and forecast stock market data for strongly correlated time intervals. The daily data of stock markets of SP500, FTSE and DAX (western markets) and NIKKEI, TAIEX and KOSPI (eastern markets) are obtained from 2009 to the end of 2016 and their co-movement dependencies on time–frequency space using 4D multiple wavelet coherence (MWC) are determined. Once the data is detached into levels of different frequencies using scale-by-scale continuous wavelet transform, all of the time series possessing the same frequency scale are selected, inversed and forecasted using multivariate model, vector autoregressive moving average (VARMA). It is concluded that the efficiency of forecasting is increased substantially using the same-frequency highly correlated time series obtained by scale-by-scale wavelet transform. Moreover, the increasing or decreasing trend of prospected price shift is foreseen fairly well.


Sign in / Sign up

Export Citation Format

Share Document