scholarly journals EMD-Shannon Entropy-Based Methodology to Detect Incipient Damages in a Truss Structure

2018 ◽  
Vol 8 (11) ◽  
pp. 2068 ◽  
Author(s):  
Alejandro Moreno-Gomez ◽  
Juan Amezquita-Sanchez ◽  
Martin Valtierra-Rodriguez ◽  
Carlos Perez-Ramirez ◽  
Aurelio Dominguez-Gonzalez ◽  
...  

Truss-type designs are widely used in civil structures. Despite the fact that they are robust and reliable structures, different kinds of damage can appear. In order to avoid human and economic losses, the development and application of damage-detection methodologies are paramount. In this work, a methodology based on the empirical mode decomposition (EMD) method and the Shannon Entropy Index (SEI) to detect incipient damages associated with corrosion in a 3D 9-bay truss-type bridge is presented. As different EMD methods are presented in literature, the most representative methods are investigated in order to evaluate their performance for this task. To this end, the vibration signals generated in the truss-type bridge at different conditions are analyzed. For the damage condition, four severity levels of simulated corrosion (1 mm, 3 mm, 5 mm, and 8 mm of diameter reduction) generated into the elements of truss-type bridge are considered. Results demonstrate the effectiveness of the proposal in terms of detecting corrosion in its very early stage (1 mm of reduction in the element).

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 422
Author(s):  
Jose M. Machorro-Lopez ◽  
Juan P. Amezquita-Sanchez ◽  
Martin Valtierra-Rodriguez ◽  
Francisco J. Carrion-Viramontes ◽  
Juan A. Quintana-Rodriguez ◽  
...  

Large civil structures such as bridges must be permanently monitored to ensure integrity and avoid collapses due to damage resulting in devastating human fatalities and economic losses. In this article, a wavelet-based method called the Wavelet Energy Accumulation Method (WEAM) is developed in order to detect, locate and quantify damage in vehicular bridges. The WEAM consists of measuring the vibration signals on different points along the bridge while a vehicle crosses it, then those signals and the corresponding ones of the healthy bridge are subtracted and the Continuous Wavelet Transform (CWT) is applied on both, the healthy and the subtracted signals, to obtain the corresponding diagrams, which provide a clue about where the damage is located; then, the border effects must be eliminated. Finally, the Wavelet Energy (WE) is obtained by calculating the area under the curve along the selected range of scale for each point of the bridge deck. The energy of a healthy bridge is low and flat, whereas for a damaged bridge there is a WE accumulation at the damage location. The Rio Papaloapan Bridge (RPB) is considered for this research and the results obtained numerically and experimentally are very promissory to apply this method and avoid accidents.


2010 ◽  
Vol 156-157 ◽  
pp. 1717-1724
Author(s):  
Nan Kai Hsieh ◽  
Wei Yen Lin ◽  
Hong Tsu Young

Aiming at reducing cost and time of repair, condition-based shaft faults diagnosis is considered an efficient strategy for machine tool community. While the shaft with faults is operating, its vibration signals normally indicate nonlinear and non-stationary characteristics but Fourier-based approaches have shown limitations for handling this kind of signals. The methodology proposed in this research is to extract the features from shaft faults related vibration signals, from which the corresponding fault condition is then effectively identified. With an incorporation of empirical mode decomposition (EMD) method, the model applied in this research embraces some characteristics, like zero-crossing rate and energy, of intrinsic mode functions (IMFs) to represent the feature of the shaft condition.


2011 ◽  
Vol 199-200 ◽  
pp. 845-849 ◽  
Author(s):  
Hong Ying Hu ◽  
Er Bao ◽  
Jing Kang

Rotor Complex Fault Vibration signals are very hard to analysis since there are many frequencies lies in them. It needs new signal processing methods to deal with these problems. Empirical Mode Decomposition (EMD) is a non-stationary signal processing method developed recently. The frequency heterodyne EMD method can improve the frequency resolution of EMD by shifting the original frequencies to enlarge the frequencies ratio between components. It proves that the method can enhance the performance of EMD easily and effectively. The paper discusses the principle and steps of this method in detail and uses it to analyse rotor complex fault signals. The result shows that frequency heterodyne EMD method can separate different faults and detect the weaker faults in complex fault more effectively than that of normal EMD method.


Author(s):  
L. Vacca-Galloway ◽  
Y.Q. Zhang ◽  
P. Bose ◽  
S.H. Zhang

The Wobbler mouse (wr) has been studied as a model for inherited human motoneuron diseases (MNDs). Using behavioral tests for forelimb power, walking, climbing, and the “clasp-like reflex” response, the progress of the MND can be categorized into early (Stage 1, age 21 days) and late (Stage 4, age 3 months) stages. Age-and sex-matched normal phenotype littermates (NFR/wr) were used as controls (Stage 0), as well as mice from two related wild-type mouse strains: NFR/N and a C57BI/6N. Using behavioral tests, we also detected pre-symptomatic Wobblers at postnatal ages 7 and 14 days. The mice were anesthetized and perfusion-fixed for immunocytochemical (ICC) of CGRP and ChAT in the spinal cord (C3 to C5).Using computerized morphomety (Vidas, Zeiss), the numbers of IR-CGRP labelled motoneurons were significantly lower in 14 day old Wobbler specimens compared with the controls (Fig. 1). The same trend was observed at 21 days (Stage 1) and 3 months (Stage 4). The IR-CGRP-containing motoneurons in the Wobbler specimens declined progressively with age.


2013 ◽  
Vol 31 (4) ◽  
pp. 619 ◽  
Author(s):  
Luiz Eduardo Soares Ferreira ◽  
Milton José Porsani ◽  
Michelângelo G. Da Silva ◽  
Giovani Lopes Vasconcelos

ABSTRACT. Seismic processing aims to provide an adequate image of the subsurface geology. During seismic processing, the filtering of signals considered noise is of utmost importance. Among these signals is the surface rolling noise, better known as ground-roll. Ground-roll occurs mainly in land seismic data, masking reflections, and this roll has the following main features: high amplitude, low frequency and low speed. The attenuation of this noise is generally performed through so-called conventional methods using 1-D or 2-D frequency filters in the fk domain. This study uses the empirical mode decomposition (EMD) method for ground-roll attenuation. The EMD method was implemented in the programming language FORTRAN 90 and applied in the time and frequency domains. The application of this method to the processing of land seismic line 204-RL-247 in Tacutu Basin resulted in stacked seismic sections that were of similar or sometimes better quality compared with those obtained using the fk and high-pass filtering methods.Keywords: seismic processing, empirical mode decomposition, seismic data filtering, ground-roll. RESUMO. O processamento sísmico tem como principal objetivo fornecer uma imagem adequada da geologia da subsuperfície. Nas etapas do processamento sísmico a filtragem de sinais considerados como ruídos é de fundamental importância. Dentre esses ruídos encontramos o ruído de rolamento superficial, mais conhecido como ground-roll . O ground-roll ocorre principalmente em dados sísmicos terrestres, mascarando as reflexões e possui como principais características: alta amplitude, baixa frequência e baixa velocidade. A atenuação desse ruído é geralmente realizada através de métodos de filtragem ditos convencionais, que utilizam filtros de frequência 1D ou filtro 2D no domínio fk. Este trabalho utiliza o método de Decomposição em Modos Empíricos (DME) para a atenuação do ground-roll. O método DME foi implementado em linguagem de programação FORTRAN 90, e foi aplicado no domínio do tempo e da frequência. Sua aplicação no processamento da linha sísmica terrestre 204-RL-247 da Bacia do Tacutu gerou como resultados, seções sísmicas empilhadas de qualidade semelhante e por vezes melhor, quando comparadas as obtidas com os métodos de filtragem fk e passa-alta.Palavras-chave: processamento sísmico, decomposição em modos empíricos, filtragem dados sísmicos, atenuação do ground-roll.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199811
Author(s):  
Beibei Li ◽  
Qiao Zhao ◽  
Huaiyi Li ◽  
Xiumei Liu ◽  
Jichao Ma ◽  
...  

To study the vibration characteristics of the poppet valve induced by cavitation, the signal analysis method based on the ensemble empirical mode decomposition (EEMD) method was studied experimentally. The component induced by cavitation was separated from the vibration signals through the EEMD method. The results show that the IMF2 component has the largest amplitude and energy of all components. The root mean square (RMS) value, peak value of marginal spectrum, and center frequency of marginal spectrum of the IMF2 component were studied in detail. The RMS value and the peak value of the marginal spectrum decrease with a decrease of cavitation intensity. The center frequency of marginal spectrum is between 12 kHz and 20 kHz, and the center frequency first increases and then decreases with a decrease of cavitation intensity. The change rate of the center frequency also decreases with an increase of inlet pressure.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1436
Author(s):  
Tuoru Li ◽  
Senxiang Lu ◽  
Enjie Xu

The internal detector in a pipeline needs to use the ground marker to record the elapsed time for accurate positioning. Most existing ground markers use the magnetic flux leakage testing principle to detect whether the internal detector passes. However, this paper uses the method of detecting vibration signals to track and locate the internal detector. The Variational Mode Decomposition (VMD) algorithm is used to extract features, which solves the defect of large noise and many disturbances of vibration signals. In this way, the detection range is expanded, and some non-magnetic flux leakage internal detectors can also be located. Firstly, the extracted vibration signals are denoised by the VMD algorithm, then kurtosis value and power value are extracted from the intrinsic mode functions (IMFs) to form feature vectors, and finally the feature vectors are input into random forest and Multilayer Perceptron (MLP) for classification. Experimental research shows that the method designed in this paper, which combines VMD with a machine learning classifier, can effectively use vibration signals to locate the internal detector and has the characteristics of high accuracy and good adaptability.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.


2021 ◽  
Vol 29 ◽  
pp. 297-309
Author(s):  
Xiaohui Chen ◽  
Wenbo Sun ◽  
Dan Xu ◽  
Jiaojiao Ma ◽  
Feng Xiao ◽  
...  

BACKGROUND: Computed tomography (CT) imaging combined with artificial intelligence is important in the diagnosis and prognosis of lung diseases. OBJECTIVE: This study aimed to investigate temporal changes of quantitative CT findings in patients with COVID-19 in three clinic types, including moderate, severe, and non-survivors, and to predict severe cases in the early stage from the results. METHODS: One hundred and two patients with confirmed COVID-19 were included in this study. Based on the time interval between onset of symptoms and the CT scan, four stages were defined in this study: Stage-1 (0 ∼7 days); Stage-2 (8 ∼ 14 days); Stage-3 (15 ∼ 21days); Stage-4 (> 21 days). Eight parameters, the infection volume and percentage of the whole lung in four different Hounsfield (HU) ranges, ((-, -750), [-750, -300), [-300, 50) and [50, +)), were calculated and compared between different groups. RESULTS: The infection volume and percentage of four HU ranges peaked in Stage-2. The highest proportion of HU [-750, 50) was found in the infected regions in non-survivors among three groups. CONCLUSIONS: The findings indicate rapid deterioration in the first week since the onset of symptoms in non-survivors. Higher proportion of HU [-750, 50) in the lesion area might be a potential bio-marker for poor prognosis in patients with COVID-19.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ze Peng ◽  
Yanhong He ◽  
Saroj Parajuli ◽  
Qian You ◽  
Weining Wang ◽  
...  

AbstractDowny mildew (DM), caused by obligate parasitic oomycetes, is a destructive disease for a wide range of crops worldwide. Recent outbreaks of impatiens downy mildew (IDM) in many countries have caused huge economic losses. A system to reveal plant–pathogen interactions in the early stage of infection and quickly assess resistance/susceptibility of plants to DM is desired. In this study, we established an early and rapid system to achieve these goals using impatiens as a model. Thirty-two cultivars of Impatiens walleriana and I. hawkeri were evaluated for their responses to IDM at cotyledon, first/second pair of true leaf, and mature plant stages. All I. walleriana cultivars were highly susceptible to IDM. While all I. hawkeri cultivars were resistant to IDM starting at the first true leaf stage, many (14/16) were susceptible to IDM at the cotyledon stage. Two cultivars showed resistance even at the cotyledon stage. Histological characterization showed that the resistance mechanism of the I. hawkeri cultivars resembles that in grapevine and type II resistance in sunflower. By integrating full-length transcriptome sequencing (Iso-Seq) and RNA-Seq, we constructed the first reference transcriptome for Impatiens comprised of 48,758 sequences with an N50 length of 2060 bp. Comparative transcriptome and qRT-PCR analyses revealed strong candidate genes for IDM resistance, including three resistance genes orthologous to the sunflower gene RGC203, a potential candidate associated with DM resistance. Our approach of integrating early disease-resistance phenotyping, histological characterization, and transcriptome analysis lay a solid foundation to improve DM resistance in impatiens and may provide a model for other crops.


Sign in / Sign up

Export Citation Format

Share Document