scholarly journals The Effect of Different Mixed Organic Solvents on the Properties of p(OPal-MMA) Gel Electrolyte Membrane for Lithium Ion Batteries

2018 ◽  
Vol 8 (12) ◽  
pp. 2587 ◽  
Author(s):  
Lanlan Tian ◽  
Mengkun Wang ◽  
Lian Xiong ◽  
Haijun Guo ◽  
Chao Huang ◽  
...  

A solvent is a key factor during polymer membrane preparation, and it is directly related to application performance as a separator for lithium ion battery (LIB). In this study, different mixed solvents were employed to prepare polymer (p(OPal-MMA)) membranes by the phase inversion technique. The polymer membrane then absorbed liquid electrolytes to obtain gel electrolytes (GPEs). The surface morphologies and porosities of these membranes were investigated, and lithium ion transferences and electrochemical performances of these GPEs were also measured. The membrane displayed an interconnected three-dimensional framework structure with uniformly distributed pores when using DMF as a porogen. When combined with acetone as the component solvent, the prepared GPE displayed the largest lithium ion transference number (0.706), the highest porosity (42.6%) and ion conductivity (3.99 × 10−3 S/cm). Even when assembled as Li/GPE/LiFePO4 cell, it exhibited the highest initial specific capacity of 167 mAh/g and retained most capacity (162 mAh/g) after 50 cycles. The results presented here probably provide reference for choosing an appropriate mixed solvent in fabricating polymer membranes.

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenqiang Zhu ◽  
Junjian Zhou ◽  
Shuang Xiang ◽  
Xueting Bian ◽  
Jiang Yin ◽  
...  

Silicon (Si) has been counted as the most promising anode material for next-generation lithium-ion batteries, owing to its high theoretical specific capacity, safety, and high natural abundance. However, the commercial application of silicon anodes is hindered by its huge volume expansions, poor conductivity, and low coulombic efficiency. For the anode manufacture, binders play an important role of binding silicon materials, current collectors, and conductive agents, and the binder structure can significantly affect the mechanical durability, adhesion, ionic/electronic conductivities, and solid electrolyte interface (SEI) stability of the silicon anodes. Moreover, many cross-linked binders are effective in alleviating the volume expansions of silicon nanosized even microsized anodic materials along with maintaining the anode integrity and stable electrochemical performances. This mini review comprehensively summarizes various binders based on their structures, including the linear, branched, three-dimensional (3D) cross-linked, conductive polymer, and other hybrid binders. The mechanisms how various binder structures influence the performances of the silicon anodes, the limitations, and prospects of different hybrid binders are also discussed. This mini review can help in designing hybrid polymer binders and facilitating the practical application of silicon-based anodes with high electrochemical activity and long-term stability.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Haipeng Li ◽  
Shuang Yang ◽  
Yan Zhao ◽  
Taizhe Tan ◽  
Xin Wang ◽  
...  

ZnO has attracted considerable attention as electrode material in lithium-ion battery (LIB) due to its theoretically high capacity. However, poor electronic conductivity and huge volumetric changes during cycling limit its industrial applications. In this work, polypyrrole nanorings (PNRs) were successfully prepared via the solution chemistry method using pyrrole (Py) as raw material, ammonium persulfate (APS) as oxidant, and cetyltrimethyl ammonium bromide (CTAB) as surfactant. The ZnO/PNR composite was synthesized with zinc oxide nanoparticles absorbed on the surface of PPy nanorings through the one-pot in situ sol-gel method. The composite shows a three-dimensional intertwined network structure where the size of polypyrrole nanorings ranges from 80 nm to 100 nm in diameter and the average size of uniformly distributed ZnO nanocrystals is 10.49 nm. The unique three-dimensional conductive framework can provide good electronic contact between the ZnO particles and buffer the volume variation during the lithiation/delithiation processes. As an electrode material for LIBs, the ZnO/PNR composite delivers a first cycle discharge capacity of 1658 mAh g-1 and a capacity retention of 50.7% over 150 cycles at 200 mA g-1, indicating high specific capacity and outstanding cycle stability.


NANO ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. 1950157
Author(s):  
Shasha Jiao ◽  
Tiehu Li ◽  
Chuanyin Xiong ◽  
Chen Tang ◽  
Alei Dang ◽  
...  

In this study, a three-dimensional hybrid was synthesized via depositing of carbon nanotubes (CNTs) and ferroferric oxide (Fe3O4) particles on the abandoned disposable sheet mask fabric, followed by the polymerization of polypyrrole (PPY). The as-prepared nanocomposite shows superior electrochemical performances when it was used for the material for the flexible supercapacitor electrode. Benefiting from the synergistic effect of CNTs, Fe3O4 and PPY in such a porous structure, cyclic voltammetry and galvanostatic charge/discharge measurements indicated that the as-prepared hybrid possessed a good reversibility and high specific capacity at various scanning rates. It turned out that the as-prepared electrode demonstrated a high specific capacitance of 221.7[Formula: see text]F/g at the scanning rate of 50[Formula: see text]mV/s and long-life cycling stability of 88.2% after 10[Formula: see text]000 cycles. Besides, the electrode composite had good flexibility after repeated bending times of 3000. With the exception of improved electrochemical properties, this hybrid electrode material also showed many advantages, including facile preparation, flexibility and cost savings. These results will provide new ideas and solutions to design and fabricate the flexible supercapacitors, which has great prospect in the development of energy storage devices.


2013 ◽  
Vol 01 (04) ◽  
pp. 1340015
Author(s):  
WENJUAN HAO ◽  
HAN CHEN ◽  
YANHONG WANG ◽  
HANHUI ZHAN ◽  
QIANGQIANG TAN ◽  
...  

Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 cathode materials for Li -ion batteries were synthesized by a facile sol–gel method followed by calcination at various temperatures (700°C, 800°C and 900°C). Lithium acetate dihydrate, manganese (II) acetate tetrahydrate, nickel (II) acetate tetrahydrate and cobalt (II) acetate tetrahydrate are employed as the metal precursors, and citric acid monohydrate as the chelating agent. For the obtained Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 materials, the metal components existed in the form of Mn 4+, Ni 2+ and Co 3+, and their molar ratio was in good agreement with 0.56 : 0.16 : 0.08. The calcination temperature played an important role in the particle size, crystallinity and further electrochemical properties of the cathode materials. The Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 material calcined at 800°C for 6 h showed the best electrochemical performances. Its discharge specific capacities cycled at 0.1 C, 0.5 C, 1 C and 2 C rates were 266.0 mAh g−1, 243.1 mAh g−1, 218.2 mAh g−1 and 192.9 mAh g−1, respectively. When recovered to 0.1 C rate, the discharge specific capacity was 260.2 mAh g−1 and the capacity loss is only 2.2%. This work demonstrates that the sol–gel method is a facile route to prepare high performance Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 cathode materials for Li -ion batteries.


2017 ◽  
Vol 8 ◽  
pp. 1297-1306 ◽  
Author(s):  
Jin Zhang ◽  
Yibing Cai ◽  
Xuebin Hou ◽  
Xiaofei Song ◽  
Pengfei Lv ◽  
...  

Titanium dioxide (TiO2) nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder its rapid development in lithium-ion batteries (LIB). In order to improve the electrochemical performances of TiO2 nanomaterials as anode for LIB, hierarchically porous TiO2 nanofibers with different tetrabutyl titanate (TBT)/paraffin oil ratios were prepared as anode for LIB via a versatile single-nozzle microemulsion electrospinning (ME-ES) method followed by calcining. The experimental results indicated that TiO2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage properties in terms of specific capacity, rate capability and cycling performance compared with solid TiO2 nanofibers for LIB. The initial discharge and charge capacity of porous TiO2 nanofibers with a TBT/paraffin oil ratio of 2.25 reached up to 634.72 and 390.42 mAh·g−1, thus resulting in a coulombic efficiency of 61.51%; and the discharge capacity maintained 264.56 mAh·g−1 after 100 cycles, which was much higher than that of solid TiO2 nanofibers. TiO2 nanofibers with TBT/paraffin oil ratio of 2.25 still obtained a high reversible capacity of 204.53 mAh·g−1 when current density returned back to 40 mA·g−1 after 60 cycles at increasing stepwise current density from 40 mA·g−1 to 800 mA·g−1. Herein, hierarchically porous TiO2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications.


2016 ◽  
Vol 09 (06) ◽  
pp. 1642004 ◽  
Author(s):  
Lei Hu ◽  
Chunfu Lin ◽  
Changhao Wang ◽  
Chao Yang ◽  
Jianbao Li ◽  
...  

TiNb2O7 nanorods have been successfully fabricated by a sol–gel method with a sodium dodecyl surfate (SDS) surfactant. X-ray diffraction indicates that the TiNb2O7 nanorods have a Ti2Nb[Formula: see text]O[Formula: see text]-type crystal structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that the nanorods have an average diameter of [Formula: see text][Formula: see text]100[Formula: see text]nm and an average length of [Formula: see text][Formula: see text]300[Formula: see text]nm. As a result of such nanosizing effect, this new material exhibits advanced electrochemical performances in terms of specific capacity, rate capability and cyclic stability. At 0.1[Formula: see text]C, it delivers a large first-cycle discharge/charge capacity of 337/279 mAh g[Formula: see text]. Its capacities remain 248, 233, 214, 182, 154 and 122[Formula: see text]mAh g[Formula: see text] at 0.5, 1, 2, 5, 10 and 20[Formula: see text]C, respectively. After 100 cycles, its capacity at 10[Formula: see text]C remains 140[Formula: see text]mAh g[Formula: see text] with large capacity retention of 91.0%.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1324 ◽  
Author(s):  
Jin Cui ◽  
Zehao Zhou ◽  
Mengyang Jia ◽  
Xin Chen ◽  
Chuan Shi ◽  
...  

Composite electrolytes consisting of polymers and three-dimensional (3D) fillers are considered to be promising electrolytes for solid lithium batteries owing to their virtues of continuous lithium-ion pathways and good mechanical properties. In the present study, an electrolyte with polyethylene oxide–lithium (bis trifluoromethyl) sulfate–succinonitrile (PLS) and frameworks of three-dimensional SiO2 nanofibers (3D SiO2 NFs) was prepared. Taking advantage of the highly conductive interfaces between 3D SiO2 NFs and PLS, the total conductivity of the electrolyte at 30 °C was approximately 9.32 × 10−5 S cm−1. With a thickness of 27 μm and a tensile strength of 7.4 MPa, the electrolyte achieved an area specific resistance of 29.0 Ω cm2. Moreover, such a 3D configuration could homogenize the electrical field, which was beneficial for suppressing dendrite growth. Consequently, Li/LiFePO4 cells assembled with PLS and 3D SiO2 NFs (PLS/3D SiO2 NFs), which delivered an original specific capacity of 167.9 mAh g−1, only suffered 3.28% capacity degradation after 100 cycles. In particular, these cells automatically shut down when PLS was decomposed above 400 °C, and the electrodes were separated by the solid framework of 3D SiO2 NFs. Therefore, the solid lithium batteries based on composite electrolytes reported here offer high safety at elevated temperatures.


NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950123
Author(s):  
Chengcheng Wei ◽  
Xiaogang Sun ◽  
Guodong Liang ◽  
Yapan Huang ◽  
Hao Hu ◽  
...  

In this work, a sandwich structure electrode was prepared by a simple vacuum filtration and rolling process. The SEM showed that the active materials were uniformly embedded in the pores of the three-dimensional conductive network of the carbon nanotube (CNTs) conductive paper. The contact interface area of active material and the conductive network significantly increased and the interface resistance was greatly reduced. The porous anode can accommodate the volume expansion of the silicon and effectively alleviated pressed during cycle. The electrode also exhibited good stability in cycles. Electrochemical tests showed that the first discharge specific capacity of the sandwich electrode reached 2330[Formula: see text]mAh/g with a coulombic efficiency of 86%. After 500 cycles, the specific capacity was still maintained at 1512[Formula: see text]mAh/g. At a large current density of 2[Formula: see text]A/g, the specific capacity hold was 840[Formula: see text]mAh/g compared with the copper foil electrode of 100[Formula: see text]mAh/g.


2022 ◽  
Vol 905 ◽  
pp. 135-141
Author(s):  
Bao Juan Yang ◽  
Rui Xia ◽  
Su Bin Jiang ◽  
Mei Zhen Gao

Due to high theoretical specific capacity and abundant reserves, tin selenide-based materials have received tremendous attentions in the fields of lithium-ion batteries. Nevertheless, the huge volume changes during insertion/de-intercalation processes deteriorate the Coulombic Efficiency greatly. In order to solve it, the researchers have made great efforts by means of controlling nanoparticles granularity, carbon coating, ion doping et al. In this study, SnSe/Cu2SnSe3 heterojunction nanocomposites were synthesized by solvo-thermal method. The resulting SnSe/Cu2SnSe3 is a three-dimensional flower-like hierarchical nanostructure composed of nanoscale thin lamellae of a thickness of 8-12 nm. The unique nanostructure could shorten the diffusion path of lithium ions and expedite charge transfer, and therefore enhance the reaction kinetics. Compared with SnSe, the initial Coulombic efficiency of SnSe/Cu2SnSe3 is raised from 59% to 90% as the anode material of lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document