scholarly journals Application of Electrical Network Frequency of Digital Recordings for Location-Stamp Verification

2019 ◽  
Vol 9 (15) ◽  
pp. 3135 ◽  
Author(s):  
Mrinmoy Sarkar ◽  
Dhiman Chowdhury ◽  
Celia Shahnaz ◽  
Shaikh Anowarul Fattah

Electrical network frequency (ENF) is a signature of a power distribution grid. It represents the deviation from the nominal frequency (50 or 60 Hz) of a power system network. The variations in ENF sequences within a grid are subject to load fluctuations within that particular grid. These ENF variations are inherently located in a multimedia signal, which is recorded close to the grid or directly from the mains power line. Thus, the specific location of a recording can be identified by analyzing the ENF sequences of the multimedia signal in absence of the concurrent power signal. In this article, a novel approach to location-stamp authentication based on ENF sequences of digital recordings is presented. ENF patterns are extracted from a number of power and audio signals recorded in different grid locations across the world. The extracted ENF signals are decomposed into low outliers and high outliers frequency segments and potential feature vectors are determined for these ENF segments by statistical and signal processing analysis. Then, a multi-class support vector machine (SVM) classification model is developed to verify the location-stamp information of the recordings. The performance evaluations corroborate the efficacy of the proposed framework.

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 757
Author(s):  
Yongke Pan ◽  
Kewen Xia ◽  
Li Wang ◽  
Ziping He

The dataset distribution of actual logging is asymmetric, as most logging data are unlabeled. With the traditional classification model, it is hard to predict the oil and gas reservoir accurately. Therefore, a novel approach to the oil layer recognition model using the improved whale swarm algorithm (WOA) and semi-supervised support vector machine (S3VM) is proposed in this paper. At first, in order to overcome the shortcomings of the Whale Optimization Algorithm applied in the parameter-optimization of the S3VM model, such as falling into a local optimization and low convergence precision, an improved WOA was proposed according to the adaptive cloud strategy and the catfish effect. Then, the improved WOA was used to optimize the kernel parameters of S3VM for oil layer recognition. In this paper, the improved WOA is used to test 15 benchmark functions of CEC2005 compared with five other algorithms. The IWOA–S3VM model is used to classify the five kinds of UCI datasets compared with the other two algorithms. Finally, the IWOA–S3VM model is used for oil layer recognition. The result shows that (1) the improved WOA has better convergence speed and optimization ability than the other five algorithms, and (2) the IWOA–S3VM model has better recognition precision when the dataset contains a labeled and unlabeled dataset in oil layer recognition.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Minoo Aminian ◽  
David Couvin ◽  
Amina Shabbeer ◽  
Kane Hadley ◽  
Scott Vandenberg ◽  
...  

We develop a novel approach for incorporating expert rules into Bayesian networks for classification ofMycobacterium tuberculosiscomplex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web.


2020 ◽  
Vol 10 (10) ◽  
pp. 2297-2307
Author(s):  
L. Jerlin Rubini ◽  
Eswaran Perumal

In the present day, distributed algorithms become more popular due to their diversity in several applications. The prediction and reorganization of medical data required more practice and information. We propose a novel approach feature selection based on efficient chronic kidney disease (CKD) prediction and classification. Primarily, the pre-processing pace will be implemented over the input data. Then, the grey wolf optimization (GWO) algorithm gets executed to choose the optimal features from the pre-processed data. Next, the projected technique exploits the Hybrid Kernel Support Vector Machine (HKSVM) as a classification model to identify the presence of CKD or not. The simulation takes place in MATLAB. The validation of the presented model takes place using a benchmark CKD dataset as of machine learning repository such as UCI under the presence of several measures. New outcome specified that the planned categorization arrangement has surpassed by containing enhanced 97.26% accuracy for kidney chronic dataset when contrasted with existing SVM technique only accomplished 94.77% and fuzzy min–max GSO neural network (FMMGNN) classifier accomplished 93.78%.


Information ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 282 ◽  
Author(s):  
Haisong Huang ◽  
Zhongyu Wei ◽  
Liguo Yao

Assembly is a very important manufacturing process in the age of Industry 4.0. Aimed at the problems of part identification and assembly inspection in industrial production, this paper proposes a method of assembly inspection based on machine vision and a deep neural network. First, the image acquisition platform is built to collect the part and assembly images. We use the Mask R-CNN model to identify and segment the shape from each part image, and to obtain the part category and position coordinates in the image. Then, according to the image segmentation results, the area, perimeter, circularity, and Hu invariant moment of the contour are extracted to form the feature vector. Finally, the SVM classification model is constructed to identify the assembly defects, with a classification accuracy rate of over 86.5%. The accuracy of the method is verified by constructing an experimental platform. The results show that the method effectively completes the identification of missing and misaligned parts in the assembly, and has good robustness.


2020 ◽  
Vol 4 (2) ◽  
pp. 329-335
Author(s):  
Rusydi Umar ◽  
Imam Riadi ◽  
Purwono

The failure of most startups in Indonesia is caused by team performance that is not solid and competent. Programmers are an integral profession in a startup team. The development of social media can be used as a strategic tool for recruiting the best programmer candidates in a company. This strategic tool is in the form of an automatic classification system of social media posting from prospective programmers. The classification results are expected to be able to predict the performance patterns of each candidate with a predicate of good or bad performance. The classification method with the best accuracy needs to be chosen in order to get an effective strategic tool so that a comparison of several methods is needed. This study compares classification methods including the Support Vector Machines (SVM) algorithm, Random Forest (RF) and Stochastic Gradient Descent (SGD). The classification results show the percentage of accuracy with k = 10 cross validation for the SVM algorithm reaches 81.3%, RF at 74.4%, and SGD at 80.1% so that the SVM method is chosen as a model of programmer performance classification on social media activities.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


2020 ◽  
Vol 15 ◽  
Author(s):  
Chun Qiu ◽  
Sai Li ◽  
Shenghui Yang ◽  
Lin Wang ◽  
Aihui Zeng ◽  
...  

Aim: To search the genes related to the mechanisms of the occurrence of glioma and to try to build a prediction model for glioblastomas. Background: The morbidity and mortality of glioblastomas are very high, which seriously endangers human health. At present, the goals of many investigations on gliomas are mainly to understand the cause and mechanism of these tumors at the molecular level and to explore clinical diagnosis and treatment methods. However, there is no effective early diagnosis method for this disease, and there are no effective prevention, diagnosis or treatment measures. Methods: First, the gene expression profiles derived from GEO were downloaded. Then, differentially expressed genes (DEGs) in the disease samples and the control samples were identified. After that, GO and KEGG enrichment analyses of DEGs were performed by DAVID. Furthermore, the correlation-based feature subset (CFS) method was applied to the selection of key DEGs. In addition, the classification model between the glioblastoma samples and the controls was built by an Support Vector Machine (SVM) based on selected key genes. Results and Discussion: Thirty-six DEGs, including 17 upregulated and 19 downregulated genes, were selected as the feature genes to build the classification model between the glioma samples and the control samples by the CFS method. The accuracy of the classification model by using a 10-fold cross-validation test and independent set test was 76.25% and 70.3%, respectively. In addition, PPP2R2B and CYBB can also be found in the top 5 hub genes screened by the protein– protein interaction (PPI) network. Conclusions: This study indicated that the CFS method is a useful tool to identify key genes in glioblastomas. In addition, we also predicted that genes such as PPP2R2B and CYBB might be potential biomarkers for the diagnosis of glioblastomas.


2020 ◽  
Vol 44 (8) ◽  
pp. 851-860
Author(s):  
Joy Eliaerts ◽  
Natalie Meert ◽  
Pierre Dardenne ◽  
Vincent Baeten ◽  
Juan-Antonio Fernandez Pierna ◽  
...  

Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC–MS) and gas chromatography with flame-ionization detection (GC–FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.


Sign in / Sign up

Export Citation Format

Share Document