scholarly journals Investigation of the Fatigue Behaviour of a Ballastless Slab Track–Bridge Structural System under Train Load

2019 ◽  
Vol 9 (17) ◽  
pp. 3625 ◽  
Author(s):  
Lingyu Zhou ◽  
Linqi Yang ◽  
Zhi Shan ◽  
Xiusheng Peng ◽  
Akim D. Mahunon

To probe into the time-dependent behaviour of the ballastless track–bridge structural system under train load, based on the import of the static and fatigue damage constitutive model of materials to simulate damage deterioration of the structural system and interface cohesive zone model to the interface layer, a three-dimensional nonlinear finite element model of the China Railway Track System Type II (CRTS II) ballastless track–bridge structural system was established using the equivalent static method. Then, using this model, we developed the numerical simulation analysis of the influence law of material damage deterioration on structural system performance under train load and revealed the fatigue evolution of the structural system. The results show that the beam remains in compressed status for the whole process, the track is in compression in the midspan and in tension at the beam end, and the tensile stress is larger near the shear groove under the double-track static load. Under the fatigue load, stiffness degradation of the structural system is not obvious, and integral rigidity of the structural system is dependent on the rigidity of the beam. Strength reduction of the materials caused stress redistribution of the structural system and had a larger effect on the stress of each layer of track structure than on the stress on the beam. The fatigue degradation of the cement-emulsified asphalt (CA) mortar layer material has a significant impact on the structural system, which directly affects structural layer stress variation with the fatigue loading cycle.

2020 ◽  
Vol 10 (16) ◽  
pp. 5504
Author(s):  
Lingyu Zhou ◽  
Yahui Yuan ◽  
Lei Zhao ◽  
Akim Djibril Gildas Mahunon ◽  
Lifan Zou ◽  
...  

To study the mechanical properties of the China Railway Track System type II (CRTS-II) ballastless slab track structure, a 1/4-scale specimen of a CRTS-II slab ballastless track-32-m standard prefabricated simply supported box girder bridge with three spans and two high-speed railway lines was developed. The mechanical properties of the structure under the action of daily natural temperatures were studied under the natural environmental conditions. The structural strain and relative interlayer displacements were analyzed. The results show that the temperature of the CRTS-II ballastless track-bridge structural system changes periodically every 24 h. The strain of the structural layers of the track system first increases and then decreases sinusoidally, and the internal strain of the track system lags along the vertical depth direction. The relative displacement between the layers of the ballastless track bridge structure system increases with the increase in temperature. The extreme value of the vertical relative displacement appears between the track bed and the bridge at section 1/4 in the span, so it should be paid attention to by the maintenance personnel. Due to the constraint of the shear slots, the structural strain and relative displacement at the fixed end near the shear slots are smaller than those at the sliding end. The mid-span deflection is the largest, and the overall deflection during the cooling phase is more significant than that during the heating phase.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yu Liu ◽  
Qianqi Xu ◽  
Xiaodan Sun ◽  
Guotao Yang ◽  
Guotang Zhao

Push plate test is a powerful tool to evaluate the interfacial bond performance of China railway track structure type-II slab ballastless track structure (CRTS II SBTS). However, there is still a lack of theoretical explanation of the push plate test. In this paper, a linear proportional distribution method is proposed in terms of a series of analytical formulas to describe the interfacial force-displacement variation of CRTS II SBTS in different damage stages of the horizontal push plate test. The force-displacement relationship established by the linear proportional distribution method agrees well with that observed in full-scale test. The horizontal push plate test is then simulated, in which a bilinear cohesive zone model (CZM) was adopted to simulate the interface within track structure. The parameters of the CZM are calculated based on the force-displacement curves obtained from scale push plate test. Particularly, the normal cohesive parameters are determined based on the scale vertical push plate test instead of the traditional splitting tensile test. The simulation proves that both the maximum affected length in the undamage stage and the maximum damaged length in the damage stage depend rather on the interfacial stiffness and the material parameters of SBTS than the horizontal load. These two lengths given by the simulation are close to those defined by the proposed linear proportional distribution method. This indicates the reliability of the proposed method and the capability of scale push plate test in determining cohesive parameters.


2021 ◽  
Vol 11 (11) ◽  
pp. 4858
Author(s):  
Lingyu Zhou ◽  
Lifan Zou ◽  
Lei Zhao ◽  
Yahui Yuan ◽  
Akim D. Mahunon ◽  
...  

To study the evolution of mechanical properties of steel rebars in the China Railway Track System Type II (CRTS II) ballastless track–bridge structural system under repeated train loads, a 1/4 scale three-span ballastless slab track simple-supported bridge structural system specimen was manufactured and subjected to a multistage fatigue test with 18 million cycles. The experimental results show that the strain amplitude of the steel bar changes proportionally to the fatigue stress amplitude, and there is an obvious strain increase in the loading stage 4, where the fatigue stress amplitude is the largest. During the test, the cumulative strain–amplitude ratio first decreases then increases. At the end of the test, the cumulative strain–amplitude ratio increases by 5.46% and 5.32%, respectively, at L/2 and L/4 sections. The load–strain curve of the steel rebar keeps the shape of an oblique straight line. The slope increases first and then decreases with a degradation at the end of the test of 5.14% and 4.82%, respectively, at L/2 and L/4 sections. The mechanical properties of the rebar are enhanced under the first three million fatigue loading cycles: this is the fatigue strengthening stage. The mechanical properties of reinforcement gradually degrade from the three millionth cycle to the end of the test: this is the fatigue damage stage. Finally, based on the material fatigue damage model and the multistage cumulative damage criterion, the change rule of the load–strain curve slope of steel rebars in the fatigue damage stage is obtained by finite element simulation. The simulation results agree well with the experimental data, proving the validity of the calculation method proposed in this paper.


2021 ◽  
Vol 283 ◽  
pp. 122794
Author(s):  
Ling-Yu Zhou ◽  
Lei Zhao ◽  
Akim D. Mahunon ◽  
Ying-Ying Zhang ◽  
Hua-Yong Li ◽  
...  

2020 ◽  
pp. 109963622090982 ◽  
Author(s):  
Vishnu Saseendran ◽  
Pirashandan Varatharaj ◽  
Shenal Perera ◽  
Waruna Seneviratne

Fracture testing and analysis of aerospace grade honeycomb core sandwich constructions using a single cantilever beam test methodology is presented here. Influence of various parameters such as facesheet thickness, core density, honeycomb cell-size, and core thickness were studied. A Winkler-based foundation model was used to calculate compliance and energy-release rate, and further compare with finite element model and experiments. A cohesive zone model was developed to predict the disbond initiation and simulate the interface crack propagation in the single cantilever beam sandwich specimen. The mode I interface fracture toughness obtained from the translating base single cantilever beam setup was provided as input in this cohesive zone model. It is shown that the presented cohesive zone approach is robust, and is able to capture the debonding phenomenon for majority of the honeycomb core specimens.


2018 ◽  
Vol 8 (11) ◽  
pp. 2139 ◽  
Author(s):  
Long Chen ◽  
Jinjie Chen ◽  
Jianxi Wang

There is confusion in the original design concept for the tensioning of longitudinally connected reinforcement of the CRTSII (China Railway Track System) slab ballastless track. In order to clarify the effect of tension value of longitudinal reinforcement on the mechanical characteristics of the ballastless track, a three-dimensional finite element model, considering the nonlinear interaction between the track slab and cement-emulsified asphalt (CA) mortar of the CRTSII slab ballastless track, was established. The mechanical characteristics of the track structure under longitudinal tension load and temperature gradient load of the longitudinal joint were calculated. A method of applying prestress to post-pouring concrete was proposed according to the concept of prestress loss of pretensioning prestressed concrete, a reasonable tensile force value was proposed after the crack width, and the reinforcement stress of the ballastless track in the operation stage was checked and calculated according to the concrete design principle. When the tension force is greater than 300 kN, it is harmful to the bonding between the slab and mortar layer, which is prone to interlayer damage. In order to add prestress to concrete with wide joints to ensure the longitudinal stability of the ballastless track, and that the reinforcement stress and crack width meet design requirements, it is suggested that the tension force value should be 230 kN. Further, the temperature difference between reinforcement and concrete should be 30 °C before the initial curdle of wide joint concrete.


Author(s):  
Hussain Altammar ◽  
Sudhir Kaul ◽  
Anoop Dhingra

Damage detection and diagnostics is a key area of research in structural analysis. This paper presents results from the analysis of mixed-mode damage initiation in a composite beam under thermal and mechanical loads. A finite element model in conjunction with a cohesive zone model (CZM) is used in order to determine the location of joint separation as well as the contribution of each mode in damage (debonding) initiation. The composite beam is modeled by using two layers of aluminum that are bonded together through a layer of adhesive. Simulation results show that the model can successfully detect the location of damage under a thermo-mechanical load. The model can also be used to determine the severity of damage due to a thermal load, a mechanical load and a thermo-mechanical load. It is observed that integrating thermal analysis has a significant influence on the fracture energy.


Author(s):  
Chris Bassindale ◽  
Xin Wang ◽  
William R. Tyson ◽  
Su Xu

Abstract In this work, the cohesive zone model (CZM) was used to examine the transferability of the crack tip opening angle (CTOA) from small-scale to full-scale geometries. The pipe steel STPG370 was modeled. A drop-weight tear test (DWTT) model and pipe model were studied using the finite element code ABAQUS 2017x. The cohesive zone model was used to simulate crack propagation in 3D. The CZM parameters were calibrated based on matching the surface CTOA measured from a DWTT finite element model to the surface CTOA measured from the experimental DWTT specimen. The mid-thickness CTOA of the DWTT model was in good agreement with the experimental value determined from E3039 and the University of Tokyo group’s load-displacement data. The CZM parameters were then applied to the pipe model. The internal pressure distribution and decay during the pipe fracture process was modeled using the experimental data and implemented through a user-subroutine (VDLOAD). The mid-thickness CTOA from the DWTT model was similar to the mid-thickness CTOA from the pipe model. The average surface CTOA of the pipe model was in good agreement with the average experimental value. The results give confidence in the transferability of the CTOA between small-scale specimens and full-scale pipe.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1531 ◽  
Author(s):  
Guilpin ◽  
Franciere ◽  
Barton ◽  
Blacklock ◽  
Birkett

Adhesive bonding of polyethylene gas pipelines is receiving increasing attention as a replacement for traditional electrofusion welding due to its potential to produce rapid and low-cost joints with structural integrity and pressure tight sealing. In this paper a mode-dependent cohesive zone model for the simulation of adhesively bonded medium density polyethylene (MDPE) pipeline joints is directly determined by following three consecutive steps. Firstly, the bulk stress–strain response of the MDPE adherend was obtained via tensile testing to provide a multi-linear numerical approximation to simulate the plastic deformation of the material. Secondly, the mechanical responses of double cantilever beam and end-notched flexure test specimens were utilised for the direct extraction of the energy release rate and cohesive strength of the adhesive in failure mode I and II. Finally, these material properties were used as inputs to develop a finite element model using a cohesive zone model with triangular shape traction separation law. The developed model was successfully validated against experimental tensile lap-shear test results and was able to accurately predict the strength of adhesively-bonded MPDE pipeline joints with a maximum variation of <3%.


2011 ◽  
Vol 326 ◽  
pp. 37-52 ◽  
Author(s):  
Hassan Ijaz ◽  
M Aurangzeb Khan ◽  
Waqas Saleem ◽  
Sajid Raza Chaudry

This paper presents the mathematical modelling of fatigue damage able to carry out simulation of evolution of delamination in the laminated composite structures under cyclic loadings. A new elastic fatigue damage evolution law is proposed here. A classical interface damage evolution law, which is commonly used to predict static debonding process, is modified further to incorporate fatigue delamination effects due to high cycle loadings. The proposed fatigue damage model is identified using Fracture Mechanics tests like DCB, ENF and MMB. Simulations of delamination under fatigue loading are performed and results are successfully compared with reported experimental data on HTA/6376C unidirectional material. Delamination crack growth with variable fatigue amplitude is also performed and simulation results show that the proposed fatigue damage law can also accommodate this variable amplitude phenomenon. A study of crack tip behaviour using damage variable evolution is also carried out in this paper. Finally the effect of mesh density on crack growth is also discussed.


Sign in / Sign up

Export Citation Format

Share Document