scholarly journals A Systematic Review of the Discrepancies in Life Cycle Assessments of Green Concrete

2019 ◽  
Vol 9 (22) ◽  
pp. 4803 ◽  
Author(s):  
Hafez ◽  
Kurda ◽  
Cheung ◽  
Nagaratnam

It is challenging to measure the environmental impact of concrete with the absence of a consensus on a standardized methodology for life cycle assessment (LCA). Consequently, the values communicated in the literature for “green” concrete alternatives vary widely between 84 and 612 kg eq CO2/m3. This does not provide enough evidence regarding the acclaimed environmental benefits compared to ordinary Portland cement concrete knowing that the average for the latter was concluded in this study to be around 370 kg eq CO2/m3. Thus, the purpose of this study was to survey the literature on concrete LCAs in an attempt to identify the potential sources of discrepancies and propose a potential solution. This was done through examining 146 papers systematically and attributing the sources of error to the four stages of an LCA: scope definition, inventory data, impact assessment and results interpretations. The main findings showed that there are 13 main sources of discrepancies in a concrete LCA that contribute to the incompatibility between the results. These sources varied between (i) user-based choices such as depending on a cradle-to-gate scope, selecting a basic volume-based functional unit and ignoring the impact allocation and (ii) intrinsic uncertainty in some of the elements, such as the means of transportation, the expected service life and fluctuations in market prices. The former affects the reliability of a study, and hence, a concrete LCA methodology should not allow for any of the uncertainties. On the other hand, the latter affects the degree of uncertainty of the final outcome, and hence, we recommended conducting scenario analyses and communicating the aggregated uncertainty through the selected indicators.

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 60 ◽  
Author(s):  
Mattias Gaglio ◽  
Elena Tamburini ◽  
Francesco Lucchesi ◽  
Vassilis Aschonitis ◽  
Anna Atti ◽  
...  

The need to reduce the environmental impacts of the food industry is increasing together with the dramatic increment of global food demand. Circulation strategies such as the exploitation of self-produced renewable energy sources can improve ecological performances of industrial processes. However, evidence is needed to demonstrate and characterize such environmental benefits. This study assessed the environmental performances of industrial processing of maize edible oil, whose energy provision is guaranteed by residues biomasses. A gate-to-gate Life Cycle Assessment (LCA) approach was applied for a large-size factory of Northern Italy to describe: (i) the environmental impacts related to industrial processing and (ii) the contribution of residue-based bioenergy to their mitigation, through the comparison with a reference system based on conventional energy. The results showed that oil refinement is the most impacting phase for almost all the considered impact categories. The use of residue-based bioenergy was found to drastically reduce the emissions for all the impact categories. Moreover, Cumulative Energy Demand analysis revealed that the use of biomass residues increased energy efficiency through a reduction of the total energy demand of the industrial process. The study demonstrates that the exploitation of residue-based bioenergy can be a sustainable solution to improve environmental performances of the food industry, while supporting circular economy.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


2021 ◽  
Vol 896 (1) ◽  
pp. 012050
Author(s):  
I P Sari ◽  
W Kuniawan ◽  
F L Sia

Abstract Tofu is one of the processed soybean foods that are very popular with Indonesian society. Despite the popularity of Tofu, Tofu production in Indonesia is generally small and medium, reaching 500 kg per day, as in the tofu factory in Semanan, West Jakarta. The purpose of this study is to analyze the environmental impact of tofu production in West Jakarta. The life cycle assessment (LCA) approach was used to achieve this goal with SimaPro software for impact calculations. This research applies the LCA cradle to gate, which consists of soybean cultivation, transportation, and tofu production processes. The environmental impacts of tofu production analyzed in this study include global warming, ozone depletion, acidification, and eutrophication. The impact analysis showed that the acquisition of soybeans, which consisted of soybean cultivation and transportation, had the most significant environmental impact with a global warming potential value of 0.882 kg CO2 eq out of a total of 0.978 CO2 eq for the whole process.


Author(s):  
N. Lourenço ◽  
L. M. Nunes

Abstract This study benchmarks vermifiltration (VF) as secondary wastewater treatment in three nature-based decentralized treatment plants using life-cycle assessment. The comparison is justified by the comparatively easier and cheaper operation of VF when compared to more traditional technologies, including small rate infiltration (SRI), constructed wetlands (CW), and activated sludge (AS). Standard life cycle assessment was used and applied to three case studies located in southern Europe. Material intensity during construction was highest for VF, but impacts during operation were lower, compensating those of the other phases. Impacts during the construction phase far outweigh those of operation and dismantling for facilities using constructed wetlands and activated sludge, when the number of served inhabitants is small, and due to lack of economies of scale. VF used as secondary treatment was shown to contribute to reducing the environmental impacts, mainly in constructed wetlands and activated sludge. The replacement of CW by VF seems to bring important environmental benefits in most impact categories, in particular in the construction phase. The replacement by VF in facilities with SRI seems to result in the improvement of some of the impact categories, in particular in the operation phase. As for dismantling, no conclusive results were obtained.


2021 ◽  
Author(s):  
Sampatrao Manjare ◽  
Amit Shanbag

Abstract Methyl bromide is an effective and useful insecticide. It has ability to enter rapidly into materials at room temperature & pressure. Nowadays, it is primarily used for container fumigation purposes. However, exposure to it causes serious health-related issues. It is also one of the ozone-depleting substances. In this work, “cradle to gate” and “cradle to grave” approaches are considered to carry out a life cycle assessment of methyl bromide production. SimaPro software with the IMPACT 2002+ method is used to compute the results. From the results of cradle to gate approach, it is inferred that major emissions are due to usage of plant utilities and methanol production process which have a substantial effect on the atmosphere. From the results of cradle to grave approach, it is noted that application of methyl bromide causes significant environmental damage particularly to ozone layer followed by non-carcinogen.


2011 ◽  
Vol 13 (2) ◽  
pp. 367-375 ◽  
Author(s):  
Serena Righi ◽  
Andrea Morfino ◽  
Paola Galletti ◽  
Chiara Samorì ◽  
Alessandro Tugnoli ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 3669
Author(s):  
Elena Surra ◽  
Manuela Correia ◽  
Sónia Figueiredo ◽  
Jaime Gabriel Silva ◽  
Joana Vieira ◽  
...  

Several pesticides and pharmaceuticals (PP) have been detected in the effluent of a full-scale Portuguese Wastewater Treatment Plant (WWTP). Their presence contributed to the environmental burdens associated with the existing treatment of the Municipal Wastewater (MWW) in the impact categories of Human Carcinogenicity, Non-Carcinogenicity, and Freshwater toxicities on average by 85%, 60%, and 90%, respectively (ReciPe2016 and USEtox methods). The environmental and economic assessment of the installation of an Anodic Oxidation (AO) unit for PPs’ removal was performed through Life Cycle and Economic Analysis, considering two types of anodes, the Boron-Doped Diamond (BDD) and the Mixed Metal Oxides (MMO). The operation of the AO unit increased the environmental burdens of the system by 95% on average (USEtox), but these impacts can be partially compensated by the avoided the production of non-renewable energy in the Portuguese electricity mix by biogas cogeneration at the WWTP. If the construction of the AO unit and the manufacturing of the electrodes are considered, the Human and Freshwater Toxicities are often higher than the environmental benefits derived from the PPs’ removal. On the economic side, the MMO configuration is clearly more advantageous, whereas BDD is environmentally more favorable. The issue of the presence of PP in MWW effluents has to be addressed as an integrated solution both improving upstream PP’s management and adopting PP’s removal technologies strongly supported by renewable energies. Further insights are needed for the assessment of fate and of the environmental effects of PP in the sludge.


2021 ◽  
Vol 11 (8) ◽  
pp. 3599
Author(s):  
Isabella Bianco ◽  
Deborah Panepinto ◽  
Mariachiara Zanetti

Waste tyres and their accumulation is a global environmental concern; they are not biodegradable, and, globally, an estimated 1.5 billion are generated annually. Every year around 350,000 tons of end-of-life tyres (ELT) are managed in Italy, collected from cars, two-wheeled vehicles, trucks, up to large quarry vehicles and agricultural vehicles. ELTs are collected and sent for material or energy recovery, in line with the circular economy principles. This paper investigates the environmental impacts of two common scenarios of ELT treatments. Specifically, it is analysed the recycling of crumb rubber (CR, deriving from the tyre shredding) for the composition of bituminous mixtures for the wearing course of roads. This scenario is compared with the energy recovery route in a dedicated incinerator. To this aim the standardised methodology of Life Cycle Assessment (ISO 14040-44) is employed. Results shows that for most part of the impact categories analysed, the material recovery presents higher environmental benefits if compared with energy recovery.


2021 ◽  
Vol 14 (1) ◽  
pp. 92
Author(s):  
Isabella Bianco ◽  
Deborah Panepinto ◽  
Mariachiara Zanetti

Waste-to-energy (WtE) technologies can offer sustainable solutions for waste, which can no more be reused or recycled, such as the part of municipal solid waste (MSW) that is not suitable for recycling processes. This study focused on the environmental consequences of the production of electricity from incineration and gasification of MSW. To this aim, the standardised life cycle assessment (LCA) methodology was used. A life cycle inventory, mainly composed by primary data, is provided. Starting from these data, different highly shared LCA approaches were used to calculate the potential impacts of 1 kWh provided by the two analysed WtE technologies. The different approaches concern the method of accounting for the by-products (through an economic allocation and a system expansion) and the inclusion/exclusion of environmental benefits due to the avoided landfill for the MSW. For each approach, impact-assessment results were calculated with the ReCiPe midpoint (H) method. A comparison was carried out (i) between the results obtained for the same WtE technology but calculated with different approaches and (ii) between the impact results of electricity generated by the two WtE technologies calculated with the same approach. From the study, it emerged that, according to the accounting rules, the impact results can significantly change and, for some impact categories, even lead to opposite conclusions. In the absence of category rules that harmonise the environmental assessments of WtE processes, it is therefore recommended that the development/use/reproduction/comparison of studies focused on the valorisation of waste should be carried out with caution.


Sign in / Sign up

Export Citation Format

Share Document