scholarly journals Fine Particle Emissions from Sauna Stoves: Effects of Combustion Appliance and Fuel, and Implications for the Finnish Emission Inventory

Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 775 ◽  
Author(s):  
Jarkko Tissari ◽  
Sampsa Väätäinen ◽  
Jani Leskinen ◽  
Mikko Savolahti ◽  
Heikki Lamberg ◽  
...  

Sauna Stoves (SS) are simple wood combustion appliances used mainly in Nordic countries. They generate emissions that have an impact on air quality and climate. In this study, a new measurement concept for comparing the operation, thermal efficiency, and real-life fine particle and gaseous emissions of SS was utilized. In addition, a novel, simple, and universal emission calculation procedure for the determination of nominal emission factors was developed for which the equations are presented for the first time. Fine particle and gaseous concentrations from 10 different types of SS were investigated. It was found that each SS model was an individual in relation to stove performance: stove heating time, air-to-fuel ratio, thermal efficiency, and emissions. Nine-fold differences in fine particle mass (PM1) concentrations, and about 90-fold differences in concentrations of polycyclic aromatic hydrocarbons (PAH) were found between the SS, when dry (11% moisture content) birch wood was used. By using moist (18%) wood, particle number and carbon monoxide concentrations increased, but interestingly, PM1, PAH, and black carbon (BC) concentrations clearly decreased, when comparing to dry wood. E.g., PAH concentrations were 5.5–9.6 times higher with dry wood than with moist wood. Between wood species, 2–3-fold maximum differences in the emissions were found, whereas about 1.5-fold differences were observed between bark-containing and debarked wood logs. On average, the emissions measured in this study were considerably lower than in previous studies and emission inventories. This suggests that overall the designs of sauna stoves available on the market have improved during the 2010s. The findings of this study were used to update the calculation scheme behind the inventories, causing the estimates for total PM emissions from SS in Finland to decrease. However, wood-fired sauna stoves are still estimated to be the highest individual emission source of fine particles and black carbon in Finland.

2008 ◽  
Vol 42 (34) ◽  
pp. 7862-7873 ◽  
Author(s):  
J. Tissari ◽  
J. Lyyränen ◽  
K. Hytönen ◽  
O. Sippula ◽  
U. Tapper ◽  
...  

2014 ◽  
Vol 692 ◽  
pp. 191-199
Author(s):  
Wan Fu Huang ◽  
Xiao Feng Wang ◽  
Xin Dong Li ◽  
Si Ming Yan

This study used ceramic membrane technology to concentrate tungsten fine particles for its inefficient recycling issue. Factors affecting the membrane concentration test were discussed, and the results show that: under the feed flow of 7000 mL/min, concentration time of 3 hours, and concentration liquid flow of 500 mL/min, it is the optimal effect of ceramic membrane concentration tungsten fine particle, which the interception rate reaches more than 99%, the membrane permeation flux can be nearly reach 470mL/(min×1099cm2) above, and concentrate concentration can be basically stable at around 29% . Ceramic membrane flux recovery rate can be as high as 93% by 7 minutes backwashing firstly and then 2 minutes forward cleaning.


2013 ◽  
Vol 120 ◽  
pp. 27-32 ◽  
Author(s):  
Fuhai Geng ◽  
Jing Hua ◽  
Zhe Mu ◽  
Li Peng ◽  
Xiaohui Xu ◽  
...  

2018 ◽  
Vol 34 (5) ◽  
pp. 2577-2582
Author(s):  
Mohamed H. H. Mahmoud ◽  
Mahmoud M. Hessien

Nanomagnetic ferrite materials are of great technological importance in several industries due to their high performance, ease of preparation and low cost. The ferrite properties are based on composition, structure and methods of preparation. Nickel ferrite, NiFe2O4, was prepared by the simple microwave assisted-hydrothermal method. Nickel chloride and ferric chloride solutions (stoichiometric ratio of 1: 2 respectively) were mixed, the pH was raised to 10.5 and the mixture was heated at 180 °C in a closed Teflon vessel using a microwave oven at different periods of time (2 - 24 h). The formed powders were examined by XRD, TEM, and VSM. The intensity of nickel-ferrite in the XRD patterns increased with time owing to increase in crystallinity of the formed phase. The TEM images showed that, the size was in the range of 20-40 nm and contents of fine particles noticeably decreased with increasing reaction time to 4-6 hrs and contents of more regular cubic particles are formed. The NiFe2O4 magnetization was continuesly increased with raising the heating time from 2h (9 emu/g) to 24 h (43 emu/g) which may be due to the high purity and crystallinity of the formed NiFe2O4. The results showed that the properties of the formed ferrite can be tailored by controlling the heating time. Microwave assisted co-precipitation followed by hydrothermal digestion resulted in a substance of good homogeneity and crystallinity at a short time.


2015 ◽  
Vol 19 (5) ◽  
pp. 1663-1671 ◽  
Author(s):  
Bihter Arabacigil ◽  
Numan Yuksel ◽  
Atakan Avci

In this paper, the potential use and effectiveness of paraffin wax in a new solar cooker was experimentally investigated during daylight and late evening hours. For these experiments, a cooker having an inner reflecting surface was designed, constructed by filling paraffin wax and metal shavings. The side- and sub-surface temperatures of the paraffin wax in the cooker are measured in the summer months of June and July. The thermal efficiency of the cooker was tested on different conditions. The results show that the optimum angle of the outer reflector is 30?. Here, the peak temperature of the paraffin wax in the solar cooker was 83.4 ?C. The average solar radiation reflected makes a contribution of 9.26% to the temperature of paraffin wax with the outer reflector. The solar cooker with the outer reflector angle of 30? receives also reflected radiation from the inner reflectors. Besides, the heating time is decreased to approximately 1 hour. The designed solar cooker can be effectively used with 30.3% daily thermal efficiency and paraffin wax due to the amount of energy stored.


Author(s):  
Elena Bezuglaya ◽  
Nikolay Lyapunov ◽  
Vladimir Bovtenko ◽  
Igor Zinchenko ◽  
Yurij Stolper

Aim. The purpose was to provide the rationale of test in regard to uniformity of fine particles dose for pressurised metered dose inhalers (pMDIs). Materials and methods. The pMDIs containing suspensions of salbutamol sulfate (SS) or solutions of beclometasone dipropionate (BD) were studied by laser diffraction and high performance liquid chromatography (HPLC). The particle size distribution of SS, the average dose mass and uniformity of dose mass, the average delivered dose and the uniformity of delivered dose, the average fine particles dose and uniformity of fine particles dose were determined. Apparatus A was used for assessment of fine particles dose. Results. The two analytical procedures for the quantitative determination of SS and BD by HPLC were validated in the ranges with low concentrations of these substances. The 5 medicinal products in pMDI dosage form were studied: 3 preparations were with SS and 2 ones contained BD. It was shown that three products with SS were very similar in regard to particle size distribution in containers and the average values of delivered dose were almost the same, but these products were different in the average dose mass and fine particle dose. According to the research results, the expediency of determining the average dose mass and the tests concerning uniformity of dosing of preparations by dose mass and by fine particle dose was substantiated. It was shown that in the case of pMDI the dosing of solutions of BD was more uniform compared to suspensions of SS. The approaches of leading and other pharmacopoeias concerning uniformity of dosing for pMDIs were critically discussed. The expediency of determination of uniformity of fine particle dose at the stage of pharmaceutical development was substantiated, as the therapeutic effect depends on fine particle dose. Issues concerning standardization pMDIs in regard to uniformity of fine particle dose were discussed. Conclusions. The expediency of standardization and quality control of pMDIs in regard to such attributes as the average dose mass, which characterizes the volume of the metering chamber of the valve as well as the uniformity of the dose mass and the uniformity of fine particle dose, which assure the therapeutic effect of each dose of the product was substantiated


2018 ◽  
Author(s):  
Zhaofeng Tan ◽  
Keding Lu ◽  
Meiqing Jiang ◽  
Rong Su ◽  
Hongli Wang ◽  
...  

Abstract. Atmospheric oxidation capacity is the core of converting fresh-emitted substances to secondary pollutants. In this study, we present the in-situ measurements at four Chinese megacities (Beijing, Shanghai, Guangzhou, and Chongqing) in China during photochemical polluted seasons. The atmospheric oxidation capacity is evaluated using an observational-based model with the input of radical chemistry precursor measurements. The radical budget analysis illustrates the importance of HONO and HCHO photolysis, which contribute nearly half of the total radical primary sources. The radical propagation is efficient due to abundant of NO in the urban environments. Hence, the production rate of secondary pollutants, i.e. ozone and fine particle precursors (H2SO4, HNO3, and ELVOCs) is fast resulting in secondary air pollution. The ozone budget demonstrates that strong ozone production occurs in the urban area which results in fast ozone concentration increase locally and further transported to downwind areas. On the other hand, the O3-NOx-VOC sensitivity tests show that ozone production is VOC-limited, among which alkenes and aromatics should be first mitigated for ozone pollution control in the presented four megacities. However, NOx emission control will lead to more server ozone pollution due to the drawback-effect of NOx reduction. For fine particle pollution, the role of HNO3−NO3− partitioning system is investigated with a thermal dynamic model (ISORROPIA2) due to the importance of particulate nitrate during photochemical polluted seasons. The strong nitrate acid production converts efficiently to nitrate particles due to high RH and ammonium-rich conditions during photochemical polluted seasons. This study highlights the efficient radical chemistry maintains the atmospheric oxidation capacity in Chinese megacities, which results in secondary pollutions characterized by ozone and fine particles.


2018 ◽  
Vol 634 ◽  
pp. 77-86 ◽  
Author(s):  
Margaux Sanchez ◽  
Albert Ambros ◽  
Carles Milà ◽  
Maëlle Salmon ◽  
Kalpana Balakrishnan ◽  
...  

2018 ◽  
Vol 18 (24) ◽  
pp. 17843-17861 ◽  
Author(s):  
Nivedita K. Kumar ◽  
Joel C. Corbin ◽  
Emily A. Bruns ◽  
Dario Massabó ◽  
Jay G. Slowik ◽  
...  

Abstract. We investigate the optical properties of light-absorbing organic carbon (brown carbon) from domestic wood combustion as a function of simulated atmospheric aging. At shorter wavelengths (370–470 nm), light absorption by brown carbon from primary organic aerosol (POA) and secondary organic aerosol (SOA) formed during aging was around 10 % and 20 %, respectively, of the total aerosol absorption (brown carbon plus black carbon). The mass absorption cross section (MAC) determined for black carbon (BC, 13.7 m2 g−1 at 370 nm, with geometric standard deviation GSD =1.1) was consistent with that recommended by Bond et al. (2006). The corresponding MAC of POA (5.5 m2 g−1; GSD =1.2) was higher than that of SOA (2.4 m2 g−1; GSD =1.3) at 370 nm. However, SOA presents a substantial mass fraction, with a measured average SOA ∕ POA mass ratio after aging of ∼5 and therefore contributes significantly to the overall light absorption, highlighting the importance of wood-combustion SOA as a source of atmospheric brown carbon. The wavelength dependence of POA and SOA light absorption between 370 and 660 nm is well described with absorption Ångström exponents of 4.6 and 5.6, respectively. UV-visible absorbance measurements of water and methanol-extracted OA were also performed, showing that the majority of the light-absorbing OA is water insoluble even after aging.


Sign in / Sign up

Export Citation Format

Share Document