scholarly journals Study of Chemical and Optical Properties of Biomass Burning Aerosols during Long-Range Transport Events toward the Arctic in Summer 2017

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 84 ◽  
Author(s):  
Tymon Zielinski ◽  
Ezio Bolzacchini ◽  
Marco Cataldi ◽  
Luca Ferrero ◽  
Sandra Graßl ◽  
...  

Biomass burning related aerosol episodes are becoming a serious threat to the radiative balance of the Arctic region. Since early July 2017 intense wildfires were recorded between August and September in Canada and Greenland, covering an area up to 4674 km2 in size. This paper describes the impact of these biomass burning (BB) events measured over Svalbard, using an ensemble of ground-based, columnar, and vertically-resolved techniques. BB influenced the aerosol chemistry via nitrates and oxalates, which exhibited an increase in their concentrations in all of size fractions, indicating the BB origin of particles. The absorption coefficient data (530 nm) at ground reached values up to 0.6 Mm–1, highlighting the impact of these BB events when compared to average Arctic background values, which do not exceed 0.05 Mm–1. The absorption behavior is fundamental as implies a subsequent atmospheric heating. At the same time, the AERONET Aerosol Optical Depth (AOD) data showed high values at stations located close to or in Canada (AOD over 2.0). Similarly, increased values of AODs were then observed in Svalbard, e.g., in Hornsund (daily average AODs exceeded 0.14 and reached hourly values up to 0.5). Elevated values of AODs were then registered in Sodankylä and Andenes (daily average AODs exceeding 0.150) a few days after the Svalbard observation of the event highlighting the BB columnar magnitude, which is crucial for the radiative impact. All the reported data suggest to rank the summer 2017 plume of aerosols as one of the biggest atmosphere related environmental problems over Svalbard region in last 10 years.

2022 ◽  
Vol 14 (2) ◽  
pp. 313
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Giovanni Muscari ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

Boreal fires have increased during the last years and are projected to become more intense and frequent as a consequence of climate change. Wildfires produce a wide range of effects on the Arctic climate and ecosystem, and understanding these effects is crucial for predicting the future evolution of the Arctic region. This study focuses on the impact of the long-range transport of biomass-burning aerosol into the atmosphere and the corresponding radiative perturbation in the shortwave frequency range. As a case study, we investigate an intense biomass-burning (BB) event which took place in summer 2017 in Canada and subsequent northeastward transport of gases and particles in the plume leading to exceptionally high values (0.86) of Aerosol Optical Depth (AOD) at 500 nm measured in northwestern Greenland on 21 August 2017. This work characterizes the BB plume measured at the Thule High Arctic Atmospheric Observatory (THAAO; 76.53∘N, 68.74∘W) in August 2017 by assessing the associated shortwave aerosol direct radiative impact over the THAAO and extending this evaluation over the broader region (60∘N–80∘N, 110∘W–0∘E). The radiative transfer simulations with MODTRAN6.0 estimated an aerosol heating rate of up to 0.5 K/day in the upper aerosol layer (8–12 km). The direct aerosol radiative effect (ARE) vertical profile shows a maximum negative value of −45.4 Wm−2 for a 78∘ solar zenith angle above THAAO at 3 km altitude. A cumulative surface ARE of −127.5 TW is estimated to have occurred on 21 August 2017 over a portion (∼3.1×106 km2) of the considered domain (60∘N–80∘N, 110∘W–0∘E). ARE regional mean daily values over the same portion of the domain vary between −65 and −25 Wm−2. Although this is a limited temporal event, this effect can have significant influence on the Arctic radiative budget, especially in the anticipated scenario of increasing wildfires.


2011 ◽  
Vol 11 (24) ◽  
pp. 13181-13199 ◽  
Author(s):  
Q. Liang ◽  
J. M. Rodriguez ◽  
A. R. Douglass ◽  
J. H. Crawford ◽  
J. R. Olson ◽  
...  

Abstract. We use aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission to examine the distributions and source attributions of O3 and NOy in the Arctic and sub-Arctic region. Using a number of marker tracers, we distinguish various air masses from the background troposphere and examine their contributions to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has a mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreasing from ~145 ppbv in spring to ~100 ppbv in summer. These observed mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in emissions and stratospheric ozone layer in the past two decades that influence Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses, with mean O3 concentrations of 140–160 ppbv, are significant direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin displays net O3 formation in the Arctic due to its sustainable, high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer). The air masses influenced by the stratosphere sampled during ARCTAS-B also show conversion of HNO3 to PAN. This active production of PAN is the result of increased degradation of ethane in the stratosphere-troposphere mixed air mass to form CH3CHO, followed by subsequent formation of PAN under high NOx conditions. These findings imply that an adequate representation of stratospheric NOy input, in addition to stratospheric O3 influx, is essential to accurately simulate tropospheric Arctic O3, NOx and PAN in chemistry transport models. Plumes influenced by recent anthropogenic and biomass burning emissions observed during ARCTAS show highly elevated levels of hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contain O3 higher than that in the Arctic tropospheric background except some aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.


2011 ◽  
Vol 11 (4) ◽  
pp. 10721-10767 ◽  
Author(s):  
Q. Liang ◽  
J. M. Rodriguez ◽  
A. R. Douglass ◽  
J. H. Crawford ◽  
E. Apel ◽  
...  

Abstract. We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreases from ~145 ppbv in spring to ~100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140–160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of ~120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3 and NOx photochemistry as well as the atmospheric budget of PAN in tropospheric chemistry transport models of the Arctic. Anthropogenic and biomass burning pollution plumes observed during ARCTAS show highly elevated hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contribute significantly to O3 in the Arctic troposphere except in some of the aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.


2021 ◽  
Author(s):  
Ramiro González Catón ◽  
Carlos Toledano ◽  
Roberto Román Diez ◽  
David Mateos ◽  
Eija Asmi ◽  
...  

<p><span><span>Long range transported aerosol from biomass burning affects polar regions, especially the Arctic. The frequency and intensity of bushfires in the context of a warming climate has been pointed out in the last report of the Intergovernmental Panel on Climate Change. In high latitudes, these events impact large areas through long-range transport of the smoke particles in the troposphere or even the stratosphere. The lifetime and radiative impact are related with the height of the plumes and the processes that modify particle size and absorptive properties during the transport. Several recent publications have shown the impact of the Australian smoke in the southern hemisphere, including Antarctica, in January-March 2020. The tools that were used to monitor that extraordinary event can be used in the Arctic to investigate similar effects in the frequent biomass burning events that generate smoke plumes in boreal regions. In this work, we present the results derived from ground-based instrumentation as well as satellite and model data. The change of the smoke properties after several days of transport is also provided, namely an increase in the fine mode particle size and the single scattering albedo, as well as a decrease in the coarse mode particle concentration. These features are relevant for radiative forcing calculations and therefore the impact of long range transported smoke in the radiative balance over polar regions.</span></span></p>


2020 ◽  
Vol 14 (8) ◽  
pp. 2673-2686 ◽  
Author(s):  
Ramdane Alkama ◽  
Patrick C. Taylor ◽  
Lorea Garcia-San Martin ◽  
Herve Douville ◽  
Gregory Duveiller ◽  
...  

Abstract. Clouds play an important role in the climate system: (1) cooling Earth by reflecting incoming sunlight to space and (2) warming Earth by reducing thermal energy loss to space. Cloud radiative effects are especially important in polar regions and have the potential to significantly alter the impact of sea ice decline on the surface radiation budget. Using CERES (Clouds and the Earth's Radiant Energy System) data and 32 CMIP5 (Coupled Model Intercomparison Project) climate models, we quantify the influence of polar clouds on the radiative impact of polar sea ice variability. Our results show that the cloud short-wave cooling effect strongly influences the impact of sea ice variability on the surface radiation budget and does so in a counter-intuitive manner over the polar seas: years with less sea ice and a larger net surface radiative flux show a more negative cloud radiative effect. Our results indicate that 66±2% of this change in the net cloud radiative effect is due to the reduction in surface albedo and that the remaining 34±1 % is due to an increase in cloud cover and optical thickness. The overall cloud radiative damping effect is 56±2 % over the Antarctic and 47±3 % over the Arctic. Thus, present-day cloud properties significantly reduce the net radiative impact of sea ice loss on the Arctic and Antarctic surface radiation budgets. As a result, climate models must accurately represent present-day polar cloud properties in order to capture the surface radiation budget impact of polar sea ice loss and thus the surface albedo feedback.


2007 ◽  
Vol 7 (17) ◽  
pp. 4527-4536 ◽  
Author(s):  
S. Eckhardt ◽  
K. Breivik ◽  
S. Manø ◽  
A. Stohl

Abstract. Soils and forests in the boreal region of the Northern Hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs), such as the polychlorinated biphenyls (PCBs). Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007). Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3–4 weeks (Stohl et al., 2006). Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 μg PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere.


2017 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry-transport model GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and found that the simulated seasonal variations were improved by implementing an aging parameterization and reducing the wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Okhotsk Sea and East Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130°–180° E and 3–8 km altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km altitude due to uplifting during the long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was smaller than that from other large source regions such as Europe, Russia and North America. However, the East Asian contribution was most important for BC in the middle troposphere (41 %) and BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of the Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


2020 ◽  
Author(s):  
Anu-Maija Sundström ◽  
Tomi Karppinen ◽  
Antti Arola ◽  
Larisa Sogacheva ◽  
Hannakaisa Lindqvist ◽  
...  

<p>Climate change is proceeding fastest in the Arctic region. During past years Arctic summers have been warmer and drier elevating the risk for extensive forest fire episodes. In fact, satellite observations show, that during past two summers (2018, 2019) an increase is seen in the number of fires occurring above the Arctic Circle, especially in Siberia. While human-induced emissions of long-lived greenhouse gases are the main driving factor of global warming, short-lived climate forcers or pollutants emitted from the forest fires are also playing an important role especially in the Arctic. Absorbing aerosols can cause direct arctic warming locally. They can also alter radiative balance when depositing onto snow/ice and decreasing the surface albedo, resulting in subsequent warming. Aerosol-cloud interaction feedbacks can also enhance warming. Forest fire emissions also affect local air quality and photochemical processes in the atmosphere. For example, CO contributes to the formation of tropospheric ozone and affects the abundance of greenhouse gases such as methane and CO<sub>2</sub>.</p><p>This study focuses on analyzing fire episodes in the Arctic for the past 10 years, as well as investigating the transport of forest fire CO and smoke aerosols to the Arctic. Smoke plumes and their transport are analyzed using Absorbing Aerosol Index (AAI) from several satellite instruments: GOME-2 onboard Metop A and B, OMI onboard Aura, and TROPOMI onboard Copernicus Sentinel-5P satellite. Observations of CO are obtained from IASI (Metop A and B) as well as from TROPOMI, while the fire observations are obtained from MODIS instruments onboard Aqua and Terra, as well as from VIIRS onboard Suomi NPP.  In addition, observations e.g. from a space-borne lidar, CALIPSO, is used to obtain vertical distribution of smoke and to estimate plume heights.</p>


2014 ◽  
Vol 14 (18) ◽  
pp. 25281-25350 ◽  
Author(s):  
S. A. Monks ◽  
S. R. Arnold ◽  
L. K. Emmons ◽  
K. S. Law ◽  
S. Turquety ◽  
...  

Abstract. Using observations from aircraft, surface stations and satellite, we comprehensively evaluate multi-model simulations of carbon monoxide (CO) and ozone (O3) in the Arctic and over lower latitude emission regions, as part of the POLARCAT Model Inter-comparison Project (POLMIP). Evaluation of eleven atmospheric models with chemistry shows that they generally underestimate CO throughout the Arctic troposphere, with the largest biases found during winter and spring. Negative CO biases are also found throughout the Northern Hemisphere, with multi-model mean gross errors (9–12%) suggesting models perform similarly over Asia, North America and Europe. A multi-model annual mean tropospheric OH (10.8 ± 0.6 × 105 molec cm−3) is found to be slightly higher than previous estimates of OH constrained by methyl chloroform, suggesting negative CO biases in models may be improved through better constraints on OH. Models that have lower Arctic OH do not always show a substantial improvement in their negative CO biases, suggesting that Arctic OH is not the dominant factor controlling the Arctic CO burden in these models. In addition to these general biases, models do not capture the magnitude of CO enhancements observed in the Arctic free troposphere in summer, suggesting model errors in the simulation of plumes that are transported from anthropogenic and biomass burning sources at lower latitudes. O3 in the Arctic is also generally underestimated, particularly at the surface and in the upper troposphere. Summer O3 comparisons over lower latitudes show several models overestimate upper tropospheric concentrations. Simulated CO, O3 and OH all demonstrate a substantial degree of inter-model variability. Idealised CO-like tracers are used to quantitatively compare the impact of inter-model differences in transport and OH on CO in the Arctic troposphere. The tracers show that model differences in transport from Europe in winter and from Asia throughout the year are important sources of model variability at the Barrow. Unlike transport, inter-model variability in OH similarly affects all regional tracers at Barrow. Comparisons of fixed lifetime and OH-loss idealised CO-like tracers throughout the Arctic troposphere show that OH differences are a much larger source of inter-model variability than transport differences. The concentration of OH in the models is found to be correlated with inter-model differences in H2O, suggesting it to be an important driver of differences in simulated concentrations of CO and OH at high latitudes in these simulations. Despite inter-model differences in transport and OH, the relative contributions from the different source regions (North America, Europe and Asia) and different source types (anthropogenic and biomass burning) are comparable across the models. Fire emissions from the boreal regions in 2008 contribute 33, 43 and 19% to the total Arctic CO-like tracer in spring, summer and autumn, respectively, highlighting the importance of boreal fire emissions in controlling pollutant burdens in the Arctic.


2018 ◽  
Vol 8 (3) ◽  
pp. 6-19
Author(s):  
V. F. Bogachev ◽  
S. Yu. Kozmenko ◽  
A. B. Teslya ◽  
A. A. Shchegolkova

The development of new technologies, reducing the economic and physical costs of access to the unique resources of the Arctic, has simultaneously identified a set of interrelated economic and geopolitical problems arising during the Arctic territory development. Therefore, the subject of research of the article is the problem of the Arctic communication system formation, without which the further development of the region is not possible. The authors tried to substantiate the priority directions of the development of the communication system of the Arctic region with the aim to ensure continuous mobile access to strategically significant resources of the region in the current economic and geopolitical tendencies. The article proves that the main task of developing the Arctic should be to ensure the sustainable development of the Arctic region, which can not be achieved without the formation of an adequate level of a system of transport communications which meets the set goals and objectives of the development of the territories. Limited resources with a significant amount of required initial capital investment require an informed choice of priority investment areas, “points of growth” of the system of communications formed. The main conclusion is that the provision of operational access to the strategic resources of the Arctic is impossible without further development of the transport communications system in the region, and first of all the marine transport infrastructure (in particular, the Northern Sea route). At the same time, the impact of the redistribution of traffic flows on various aspects of the region's livelihoods, including the labor market and the social sphere, requires a separate study.


Sign in / Sign up

Export Citation Format

Share Document