scholarly journals Evaluation of the Performance of Low-Cost Air Quality Sensors at a High Mountain Station with Complex Meteorological Conditions

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 212 ◽  
Author(s):  
Hongyong Li ◽  
Yujiao Zhu ◽  
Yong Zhao ◽  
Tianshu Chen ◽  
Ying Jiang ◽  
...  

Low-cost sensors have become an increasingly important supplement to air quality monitoring networks at the ground level, yet their performances have not been evaluated at high-elevation areas, where the weather conditions are complex and characterized by low air pressure, low temperatures, and high wind speed. To address this research gap, a seven-month-long inter-comparison campaign was carried out at Mt. Tai (1534 m a.s.l.) from 20 April to 30 November 2018, covering a wide range of air temperatures, relative humidities (RHs), and wind speeds. The performance of three commonly used sensors for carbon monoxide (CO), ozone (O3), and particulate matter (PM2.5) was evaluated against the reference instruments. Strong positive linear relationships between sensors and the reference data were found for CO (r = 0.83) and O3 (r = 0.79), while the PM2.5 sensor tended to overestimate PM2.5 under high RH conditions. When the data at RH >95% were removed, a strong non-linear relationship could be well fitted for PM2.5 between the sensor and reference data (r = 0.91). The impacts of temperature, RH, wind speed, and pressure on the sensor measurements were comprehensively assessed. Temperature showed a positive effect on the CO and O3 sensors, RH showed a positive effect on the PM sensor, and the influence of wind speed and air pressure on all three sensors was relatively minor. Two methods, namely a multiple linear regression model and a random forest model, were adopted to minimize the influence of meteorological factors on the sensor data. The multi-linear regression (MLR) model showed a better performance than the random forest (RF) model in correcting the sensors’ data, especially for O3 and PM2.5. Our results demonstrate the capability and potential of the low-cost sensors for the measurement of trace gases and aerosols at high mountain sites with complex weather conditions.

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 256
Author(s):  
Pengfei Han ◽  
Han Mei ◽  
Di Liu ◽  
Ning Zeng ◽  
Xiao Tang ◽  
...  

Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3–0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.


2021 ◽  
Author(s):  
Daniel Westervelt ◽  
Celeste McFarlane ◽  
Faye McNeill ◽  
R (Subu) Subramanian ◽  
Mike Giordano ◽  
...  

&lt;p&gt;There is a severe lack of air pollution data around the world. This includes large portions of low- and middle-income countries (LMICs), as well as rural areas of wealthier nations as monitors tend to be located in large metropolises. Low cost sensors (LCS) for measuring air pollution and identifying sources offer a possible path forward to remedy the lack of data, though significant knowledge gaps and caveats remain regarding the accurate application and interpretation of such devices.&lt;/p&gt;&lt;p&gt;The Clean Air Monitoring and Solutions Network (CAMS-Net) establishes an international network of networks that unites scientists, decision-makers, city administrators, citizen groups, the private sector, and other local stakeholders in co-developing new methods and best practices for real-time air quality data collection, data sharing, and solutions for air quality improvements. CAMS-Net brings together at least 32 multidisciplinary member networks from North America, Europe, Africa, and India. The project establishes a mechanism for international collaboration, builds technical capacity, shares knowledge, and trains the next generation of air quality practitioners and advocates, including domestic and international graduate students and postdoctoral researchers.&amp;#160;&lt;/p&gt;&lt;p&gt;Here we present some preliminary research accelerated through the CAMS-Net project. Specifically, we present LCS calibration methodology for several co-locations in LMICs (Accra, Ghana; Kampala, Uganda; Nairobi, Kenya; Addis Ababa, Ethiopia; and Kolkata, India), in which reference BAM-1020 PM2.5 monitors were placed side-by-side with LCS. We demonstrate that both simple multiple linear regression calibration methods for bias-correcting LCS and more complex machine learning methods can reduce bias in LCS to close to zero, while increasing correlation. For example, in Kampala, Raw PurpleAir PM2.5 data are strongly correlated with the BAM-1020 PM2.5 (r&lt;sup&gt;2&lt;/sup&gt; = 0.88), but have a mean bias of approximately 12 &amp;#956;g m&lt;sup&gt;-3&lt;/sup&gt;. Two calibration models, multiple linear regression and a random forest approach, decrease mean bias from 12 &amp;#956;g m&lt;sup&gt;-3 &lt;/sup&gt;to -1.84 &amp;#181;g m&lt;sup&gt;-3&lt;/sup&gt; or less and improve the the r&lt;sup&gt;2&lt;/sup&gt; from 0.88 to 0.96. We find similar performance in several other regions of the world. Location-specific calibration of low-cost sensors is necessary in order to obtain useful data, since sensor performance is closely tied to environmental conditions such as relative humidity. This work is a first step towards developing a database of region-specific correction factors for low cost sensors, which are exploding in popularity globally and have the potential to close the air pollution data gap especially in resource-limited countries.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2018 ◽  
Vol 11 (6) ◽  
pp. 3717-3735 ◽  
Author(s):  
Alessandro Bigi ◽  
Michael Mueller ◽  
Stuart K. Grange ◽  
Grazia Ghermandi ◽  
Christoph Hueglin

Abstract. Low cost sensors for measuring atmospheric pollutants are experiencing an increase in popularity worldwide among practitioners, academia and environmental agencies, and a large amount of data by these devices are being delivered to the public. Notwithstanding their behaviour, performance and reliability are not yet fully investigated and understood. In the present study we investigate the medium term performance of a set of NO and NO2 electrochemical sensors in Switzerland using three different regression algorithms within a field calibration approach. In order to mimic a realistic application of these devices, the sensors were initially co-located at a rural regulatory monitoring site for a 4-month calibration period, and subsequently deployed for 4 months at two distant regulatory urban sites in traffic and urban background conditions, where the performance of the calibration algorithms was explored. The applied algorithms were Multivariate Linear Regression, Support Vector Regression and Random Forest; these were tested, along with the sensors, in terms of generalisability, selectivity, drift, uncertainty, bias, noise and suitability for spatial mapping intra-urban pollution gradients with hourly resolution. Results from the deployment at the urban sites show a better performance of the non-linear algorithms (Support Vector Regression and Random Forest) achieving RMSE  <  5 ppb, R2 between 0.74 and 0.95 and MAE between 2 and 4 ppb. The combined use of both NO and NO2 sensor output in the estimate of each pollutant showed some contribution by NO sensor to NO2 estimate and vice-versa. All algorithms exhibited a drift ranging between 5 and 10 ppb for Random Forest and 15 ppb for Multivariate Linear Regression at the end of the deployment. The lowest concentration correctly estimated, with a 25 % relative expanded uncertainty, resulted in ca. 15–20 ppb and was provided by the non-linear algorithms. As an assessment for the suitability of the tested sensors for a targeted application, the probability of resolving hourly concentration difference in cities was investigated. It was found that NO concentration differences of 5–10 ppb (8–10 for NO2) can reliably be detected (90 % confidence), depending on the air pollution level. The findings of this study, although derived from a specific sensor type and sensor model, are based on a flexible methodology and have extensive potential for exploring the performance of other low cost sensors, that are different in their target pollutant and sensing technology.


2017 ◽  
Vol 41 (6) ◽  
pp. 648-664 ◽  
Author(s):  
Sérgio Henrique Godinho Silva ◽  
Anita Fernanda dos Santos Teixeira ◽  
Michele Duarte de Menezes ◽  
Luiz Roberto Guimarães Guilherme ◽  
Fatima Maria de Souza Moreira ◽  
...  

ABSTRACT Determination of soil properties helps in the correct management of soil fertility. The portable X-ray fluorescence spectrometer (pXRF) has been recently adopted to determine total chemical element contents in soils, allowing soil property inferences. However, these studies are still scarce in Brazil and other countries. The objectives of this work were to predict soil properties using pXRF data, comparing stepwise multiple linear regression (SMLR) and random forest (RF) methods, as well as mapping and validating soil properties. 120 soil samples were collected at three depths and submitted to laboratory analyses. pXRF was used in the samples and total element contents were determined. From pXRF data, SMLR and RF were used to predict soil laboratory results, reflecting soil properties, and the models were validated. The best method was used to spatialize soil properties. Using SMLR, models had high values of R² (≥0.8), however the highest accuracy was obtained in RF modeling. Exchangeable Ca, Al, Mg, potential and effective cation exchange capacity, soil organic matter, pH, and base saturation had adequate adjustment and accurate predictions with RF. Eight out of the 10 soil properties predicted by RF using pXRF data had CaO as the most important variable helping predictions, followed by P2O5, Zn and Cr. Maps generated using RF from pXRF data had high accuracy for six soil properties, reaching R2 up to 0.83. pXRF in association with RF can be used to predict soil properties with high accuracy at low cost and time, besides providing variables aiding digital soil mapping.


2021 ◽  
Vol 11 (24) ◽  
pp. 11789
Author(s):  
Najwa Kanama ◽  
Michel Ondarts ◽  
Gaëlle Guyot ◽  
Jonathan Outin ◽  
Evelyne Gonze

Background and gaps. The topic of indoor air quality (IAQ) in low-energy buildings has received increasing interest over the past few years. Often based on two measurement points and on passive measurements over one week, IAQ studies are struggling to allow the calculation of pollutants exposure. Objectives. We would like to improve the evaluation of the health impacts, through measurements able to estimate the exposure of the occupants. Methodology. This article presents detailed IAQ measurements taken in an energy-efficient occupied house in France. Two campaigns were conducted in winter and spring. Total volatile organic compounds (TVOC), formaldehyde, the particle numbers and PM2.5, carbon dioxide (CO2), relative humidity (RH), temperature (T), ventilation airflows, and weather conditions were dynamically measured in several points. Laboratory and low-cost devices were used, and an inter-comparison was carried out for them. A survey was conducted to record all the daily activities of the inhabitants. IAQ performance indicators based on the different pollutants were calculated. Results. PM2.5 cumulative exposure did not exceed the threshold available in the literature. Formaldehyde concentrations were high, in the kitchen, where the average concentrations exceeded the threshold. However, the formaldehyde cumulative exposure of the occupants did not exceed the threshold. TVOC concentrations were found to reach the threshold. With these measurements performed with high spatial and temporal discretization, we showed that such detailed data allow for a better-quality health impacts assessment and for a better understanding of the transport of pollutants between rooms.


2019 ◽  
Author(s):  
Sharad Vikram ◽  
Ashley Collier-Oxandale ◽  
Michael Ostertag ◽  
Massimiliano Menarini ◽  
Camron Chermak ◽  
...  

Abstract. Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to collect data with increased temporal and spatial resolution providing data on a large scale with unprecedented levels of detail. This type of data has the potential to empower people to make personal decisions about their exposure and support the development of local strategies for reducing pollution and improving health outcomes. However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period and then applying machine learning or other model fitting technique such as multiple-linear regression to develop a calibration model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of ambient conditions (e.g., temperature) and cross-sensitivities with non-target pollutants, there is a growing body of evidence that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation between pollutant levels and environmental conditions, including diurnal cycles. As a result, a sensor package trained at a field site may provide less reliable data when moved, or transferred, to a different location. This is a potential concern for applications seeking to perform monitoring away from regulatory monitoring sites, such as personal mobile monitoring or high-resolution monitoring of a neighborhood. We performed experiments confirming that transferability is indeed a problem and show that it can be improved by collecting data from multiple regulatory sites and building a calibration model that leverages data from a more diverse dataset. We deployed three sensor packages to each of three sites with reference monitors (nine packages total) and then rotated the sensor packages through the sites over time. Two sites were in San Diego, CA, with a third outside of Bakersfield, CA, offering varying environmental conditions, general air quality composition, and pollutant concentrations. When compared to prior single-site calibration, the multi-site approach exhibits better model transferability for a range of modeling approaches. Our experiments also reveal that random forest is especially prone to overfitting, and confirms prior results that transfer is a significant source of both bias and standard error. Bias dominated in our experiments, suggesting that transferability might be easily increased by detecting and correcting for bias. Also, given that many monitoring applications involve the deployment of many sensor packages based on the same sensing technology, there is an opportunity to leverage the availability of multiple sensors at multiple sites during calibration. We contribute a new neural network architecture model termed split-NN that splits the model into two-stages, in which the first stage corrects for sensor-to-sensor variation and the second stage uses the combined data of all the sensors to build a model for a single sensor package. The split-NN modeling approach outperforms multiple linear regression, traditional 2- and 4-layer neural network, and random forest models.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Ewa Bożena Łupikasza ◽  
Tadeusz Niedźwiedź

This paper studies surface air temperature inversions and their impact on air pollution under the background of meteorological conditions in southern Poland. The relationship of temperature gradients and air quality classes with weather conditions in the most urbanized and polluted part of Poland as represented by the Upper Silesia region (USR) within the administrative boundaries of the Górnośląsko-Zagłębiowska Metropolis (GZM) is presented. Based on probability analysis this study hierarchized the role of the selected weather elements in the development of surface-based temperature inversion (SBI) and air quality (AQ). The thresholds of weather elements for a rapid increase in the probability of oppressive air pollution episodes were distinguished. Although most SBI occurred in summer winter SBIs were of great importance. In that season a bad air quality occurred during >70% of strong inversions and >50% of moderate inversions. Air temperature more strongly triggered AQ than SBI development. Wind speed was critical for SBI and significant for AQ development. A low cloudiness favored SBI occurrence altered air quality in winter and spring during SBI and favored very bad AQ5 (>180 µg/m3) occurrence. The probability of high air pollution enhanced by SBI rapidly increased in winter when the air temperature dropped below −6 °C the wind speed decreased below 1.5 m/s and the sky was cloudless. Changes in the relative humidity did not induce rapid changes in the occurrence of bad AQ events during SBI


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1389
Author(s):  
Owen Francis Price ◽  
Hugh Forehead

Prescribed burns produce smoke pollution, but little is known about the spatial and temporal pattern because smoke plumes are usually small and poorly captured by State air-quality networks. Here, we sampled smoke around 18 forested prescribed burns in the Sydney region of eastern Australia using up to 11 Nova SDS011 particulate sensors and developed a Generalised Linear Mixed Model to predict hourly PM2.5 concentrations as a function of distance, fire size and weather conditions. During the day of the burn, PM2.5 tended to show hourly exceedances (indicating poor air quality) up to ~2 km from the fire but only in the downwind direction. In the evening, this zone expanded to up to 5 km and included upwind areas. PM2.5 concentrations were higher in still, cool weather and with an unstable atmosphere. PM2.5 concentrations were also higher in larger fires. The statistical model confirmed these results, identifying the effects of distance, period of the day, wind angle, fire size, temperature and C-Haines (atmospheric instability). The model correctly identified 78% of hourly exceedance and 72% of non-exceedance values in retained test data. Applying the statistical model predicts that prescribed burns of 1000 ha can be expected to cause air quality exceedances over an area of ~3500 ha. Cool weather that reduces the risk of fire escape, has the highest potential for polluting nearby communities, and fires that burn into the night are particularly bad.


2019 ◽  
Vol 8 (4) ◽  
pp. 3183-3186

Agrometeorology plays an important role in Precision Agriculture for resource management and effects both the quality and quantity of agriculture products. The existing solutions for monitoring weather parameters in agrometeorology are highly global and costly. These solutions are most of the time are inaccessible to the common man or farmers and require frequent physical visits to the field for obtaining information. But in agriculture monitoring highly localized weather condition is required because the weather conditions applicable farm land of one city may not be as such for a farmer of small rural. Weather conditions such as wind speed, wind direction, rainfall, solar radiation, atmospheric pressure, air particle level humidity and temperature measurement plays an important role in different fields like Agriculture, Science, Engineering and Technology. The proposed work provides an optimal solution for monitoring the weather conditions at extremely local level with low cost, compact Internet of Things (IoT) based system. In this paper the design of the system is presented with the use of NodeMCU for realizing the low-cost solution. This low-cost weather station is a product equipped with sensors to measure atmospheric conditions like temperature, humidity, wind speed, wind direction which has predominant effect in agriculture. With embedded IoT connectivity, the proposed weather station is capable to upload the information to IoT cloud ad can be used for further analysis.The user can access the information uploaded by the system anywhere from the world with the help on mobile app or web link on laptop/desktop. The “Low cost Compact IoT enabled Weather Station” does not have any display which make the proposed system more power efficient with overall current rating of about only 80mA to 90mA.


2019 ◽  
Vol 12 (8) ◽  
pp. 4211-4239 ◽  
Author(s):  
Sharad Vikram ◽  
Ashley Collier-Oxandale ◽  
Michael H. Ostertag ◽  
Massimiliano Menarini ◽  
Camron Chermak ◽  
...  

Abstract. Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to collect data with increased temporal and spatial resolution, providing data on a large scale with unprecedented levels of detail. This type of data has the potential to empower people to make personal decisions about their exposure and support the development of local strategies for reducing pollution and improving health outcomes. However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period and then applying machine learning or other model fitting technique such as multiple linear regression to develop a calibration model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of ambient conditions (e.g., temperature) and cross sensitivities with nontarget pollutants, there is a growing body of evidence that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation between pollutant levels and environmental conditions, including diurnal cycles. As a result, a sensor package trained at a field site may provide less reliable data when moved, or transferred, to a different location. This is a potential concern for applications seeking to perform monitoring away from regulatory monitoring sites, such as personal mobile monitoring or high-resolution monitoring of a neighborhood. We performed experiments confirming that transferability is indeed a problem and show that it can be improved by collecting data from multiple regulatory sites and building a calibration model that leverages data from a more diverse data set. We deployed three sensor packages to each of three sites with reference monitors (nine packages total) and then rotated the sensor packages through the sites over time. Two sites were in San Diego, CA, with a third outside of Bakersfield, CA, offering varying environmental conditions, general air quality composition, and pollutant concentrations. When compared to prior single-site calibration, the multisite approach exhibits better model transferability for a range of modeling approaches. Our experiments also reveal that random forest is especially prone to overfitting and confirm prior results that transfer is a significant source of both bias and standard error. Linear regression, on the other hand, although it exhibits relatively high error, does not degrade much in transfer. Bias dominated in our experiments, suggesting that transferability might be easily increased by detecting and correcting for bias. Also, given that many monitoring applications involve the deployment of many sensor packages based on the same sensing technology, there is an opportunity to leverage the availability of multiple sensors at multiple sites during calibration to lower the cost of training and better tolerate transfer. We contribute a new neural network architecture model termed split-NN that splits the model into two stages, in which the first stage corrects for sensor-to-sensor variation and the second stage uses the combined data of all the sensors to build a model for a single sensor package. The split-NN modeling approach outperforms multiple linear regression, traditional two- and four-layer neural networks, and random forest models. Depending on the training configuration, compared to random forest the split-NN method reduced error 0 %–11 % for NO2 and 6 %–13 % for O3.


Sign in / Sign up

Export Citation Format

Share Document