scholarly journals The IOD–ENSO Interaction: The Role of the Indian Ocean Current’s System

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1662
Author(s):  
Alexander Polonsky ◽  
Anton Torbinsky

The Indian Ocean dipole (IOD) is one of the main modes characterizing the interannual variability of the large-scale ocean–atmosphere interaction in the equatorial zone of the World Ocean. A dipole manifests itself as an out-of-phase interannual fluctuation of the ocean–atmosphere characteristics in the western and eastern parts of the equatorial–tropical zone of the Indian Ocean. IOD can be a consequence of the ENSO (El Niño–Southern Oscillation) events in the Pacific Ocean, or it can be independent of them and arise due to the Indian Ocean inherent processes. Earlier, it was suggested that the generation of the long planetary waves in the Indian Ocean by the ENSO events is one of the mechanisms of the ENSO impact on the IOD. However, quite often, such a mechanism is not the case and IOD is generated itself as an independent Indian Ocean mode. We hypothesized that this generation is due to the growing oceanic disturbances, as a result of instability of the system of Indian Ocean zonal currents in the vicinity of the critical layer, in which the phase velocity of Rossby waves is equal to the average velocity of the zonal currents. In the present work, the study of the features of the formation of the critical layer in the equatorial–tropical zone of the Indian Ocean is continued using different oceanic re-analyses and standard theory of the Rossby waves. As a result of comparison of different re-analyses data with the RAMA (The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction) measurements, the operative re-analysis ORAS5 output of European Centre for Medium-Range Weather Forecasts (ECMWF) on potential temperature, salinity, and the zonal component of the currents’ velocity for the period 1979–2018 was used. Monthly profiles of potential temperature, salinity, and the zonal component of the currents’ velocity were selected from the ORAS5 archive for the sections situated between 7.5–15.5° S and 50–100° E. From these data and for each month, using the standard theory of planetary waves, the phase velocity of the lowest baroclinic mode of the Rossby long waves was calculated and the critical layers were determined. For each critical layer, its length was calculated. The obtained time series of the length of the critical layers were compared to the variability of dipole mode index (DMI). It is shown that the majority of the cases of the IOD generation as inherent (independent on the Pacific processes) mode were accompanied by the critical layer formation in the region of interest. Usually, the critical layers occur in spring, one to two months before the onset of the positive IOD events. This indicates that the presence of instability in the system of the zonal currents can be a reason for the generation of IOD and the asymmetry of the amplitude of the dipole mode index between positive and negative events. During the extremely intense ENSO event of 1997–1998, which was accompanied by the strong IOD event, the critical layer in the equatorial–tropical zone of the Indian Ocean was absent. This ENSO event generated the oceanic planetary waves at the eastern edge of the Indian Ocean. Therefore, it is shown that the above mechanism of the ENSO–IOD interaction is a reality.

Author(s):  
A.B. Polonsky ◽  
◽  
A.V. Torbinskii ◽  
A.V. Gubarev ◽  
◽  
...  

The aim of the study is to evaluate the performance of ORAS5/SODA3/GLORYS re-analyses using the RAMA in the tropical Indian Ocean. To assess the reproducibility of the seasonal cycle and characteristics of interannual variability, we used the data on the potential temperature, salinity, and zonal component of the current vector obtained south of the equator for the period 2010–2014. It is shown that at 55°E south of the equator, the GLORYS re-analysis better reproduces the five-year averaged seasonal cycle and interannual variability than the SODA3 and ORAS5 re-analyses.


Author(s):  
A.B. Polonsky ◽  
◽  
A.V. Torbinskii ◽  
A.V. Gubarev ◽  
◽  
...  

The results of operational reanalyses for the studying the processes in the “ocean-atmosphere” system are becoming more and more widespread. This information can be used to solve both fundamental and applied problems. Such data can differ significantly from the results of direct instrumental measurements. In this regard, joint analysis of real observational data and those of various reanalysis products is very important for verifying the latter. In the Indo-Ocean region, where the number of high-quality oceanographic observations is small, this problem is especially urgent. The aim of the study is to evaluate the performance of ORAS5/SODA3/GLORYS reanalyses using the RAMA in the Indian Ocean. To do this, the reanalysis data are compared with the measurements made on moored buoys. The work used ORAS5/SODA3/GLORYS/RAMA data on the vertical distribution of potential temperature, salinity and zonal component of the current velocity at points with coordinates 55°E 12°S, 67°E 12°S and 93°E 12°S for the period 2007–2018. These data were used to compare the long-term average hydrophysical characteristics calculated from the reanalysis data and direct observational data obtained on buoys for each month. It is shown that the ORAS5, GLORYS, and SODA3 reanalyses reproduce the data on potential temperature and salinity on RAMA buoys at 12°S equally well. The average values of the velocities of zonal currents in all three reanalyses are lower than the observed values by 2 to 31%. In general, ORAS5 is best of all other reanalyses made.


2021 ◽  
Vol 13 (5) ◽  
pp. 1013
Author(s):  
Kuo-Wei Yen ◽  
Chia-Hsiang Chen

Remote sensing (RS) technology, which can facilitate the sustainable management and development of fisheries, is easily accessible and exhibits high performance. It only requires the collection of sufficient information, establishment of databases and input of human and capital resources for analysis. However, many countries are unable to effectively ensure the sustainable development of marine fisheries due to technological limitations. The main challenge is the gap in the conditions for sustainable development between developed and developing countries. Therefore, this study applied the Web of Science database and geographic information systems to analyze the gaps in fisheries science in various countries over the past 10 years. Most studies have been conducted in the offshore marine areas of the northeastern United States of America. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. This study also found that research hotspots of satellite RS applications in fisheries were mainly conducted in (1) the northeastern sea area in the United States, (2) the high seas area of the North Atlantic Ocean, (3) the surrounding sea areas of France, Spain and Portugal, (4) the surrounding areas of the Indian Ocean and (5) the East China Sea, Yellow Sea and Bohai Bay sea areas to the north of Taiwan. A comparison of publications examining the three major oceans indicated that the Atlantic Ocean was the most extensively studied in terms of RS applications in fisheries, followed by the Indian Ocean, while the Pacific Ocean was less studied than the aforementioned two regions. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. The Atlantic Ocean and the Indian Ocean have been the subjects of many local in-depth studies; in the Pacific Ocean, the coastal areas have been abundantly investigated, while offshore local areas have only been sporadically addressed. Collaboration and partnership constitute an efficient approach for transferring skills and technology across countries. For the achievement of the sustainable development goals (SDGs) by 2030, research networks can be expanded to mitigate the research gaps and improve the sustainability of marine fisheries resources.


2020 ◽  
Vol 148 (4) ◽  
pp. 1553-1565 ◽  
Author(s):  
Carl J. Schreck ◽  
Matthew A. Janiga ◽  
Stephen Baxter

Abstract This study applies Fourier filtering to a combination of rainfall estimates from TRMM and forecasts from the CFSv2. The combined data are filtered for low-frequency (LF, ≥120 days) variability, the MJO, and convectively coupled equatorial waves. The filtering provides insight into the sources of skill for the CFSv2. The LF filter, which encapsulates persistent anomalies generally corresponding with SSTs, has the largest contribution to forecast skill beyond week 2. Variability within the equatorial Pacific is dominated by its response to ENSO, such that both the unfiltered and the LF-filtered forecasts are skillful over the Pacific through the entire 45-day CFSv2 forecast. In fact, the LF forecasts in that region are more skillful than the unfiltered forecasts or any combination of the filters. Verifying filtered against unfiltered observations shows that subseasonal variability has very little opportunity to contribute to skill over the equatorial Pacific. Any subseasonal variability produced by the model is actually detracting from the skill there. The MJO primarily contributes to CFSv2 skill over the Indian Ocean, particularly during March–May and MJO phases 2–5. However, the model misses opportunities for the MJO to contribute to skill in other regions. Convectively coupled equatorial Rossby waves contribute to skill over the Indian Ocean during December–February and the Atlantic Ocean during September–November. Convectively coupled Kelvin waves show limited potential skill for predicting weekly averaged rainfall anomalies since they explain a relatively small percent of the observed variability.


2020 ◽  
Vol 3 (1) ◽  
pp. 47-55
Author(s):  
Mohamad Zreik

AbstractThe Chinese Ministry of Commerce issued a statement Friday morning, July 6, 2018, confirming the outbreak of a trade war between the United States and China. The statement came after the United States imposed tariffs on many Chinese goods, in violation of international and bilateral agreements, and the destruction of the concept of free trade which the United States calls for following it. It is a war of opposite directions, especially the contradiction between the new Trump policy and the Chinese approach. The proof is what US Defense Secretary James Matisse announced in Singapore in early June 2018 of “the full strategy of the new United States, in the Indian Ocean and the Pacific,” where China was the “sole enemy of the United States” in China’s geostrategic region. Intentions have become publicized, and trade war between the two economic giants is turning into a reality. This paper will give an overview of the US-China scenario of trade war, then a focused analysis on the Trump’s administration economic decision regarding China, and the consequences of this decision.


2017 ◽  
Author(s):  
Yair De-Leon ◽  
Nathan Paldor

Abstract. Using 20 years of accurately calibrated, high resolution, observations of Sea Surface Height Anomalies (SSHA) by satellite ‎borne altimeters we show that in the Indian Ocean south of the Australian coast the low frequency variations of SSHA are ‎dominated by westward propagating, trapped, i.e. non-harmonic, planetary waves. Our results demonstrate that the ‎meridional-dependent amplitudes of the SSHA are large only within a few degrees of latitude next to the South-Australian ‎coast while farther in the ocean they are uniformly small. This meridional variation of the SSHA signal is typical of the ‎amplitude structure in the trapped wave theory. The westward propagation speed of the SSHA signals is analyzed by ‎employing three different methods of estimation. Each one of these methods yields speed estimates that can vary widely ‎between adjacent latitudes but the combination of at least two of the three methods yields much smoother variation. The ‎estimates obtained in this manner show that the observed phase speeds at different latitudes exceed the phase speeds of ‎harmonic Rossby (Planetary) waves by 140 % to 200 %. In contrast, the theory of trapped Rossby (Planetary) waves in a ‎domain bounded by a wall on its equatorward side yields phase speeds that approximate more closely the observed phase ‎speeds.‎


Check List ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 1544 ◽  
Author(s):  
Amruta Prasade ◽  
Deepak Apte ◽  
Purushottam Kale ◽  
Otto M.P. Oliveira

The benthic ctenophore Vallicula multiformis Rankin, 1956 is recorded for the first time in the Arabian Sea, from the Gulf of Kutch, west coast of India in March 2013. This occurrence represents a remarkable extension of its geographic distribution that until now included only known the Pacific and Atlantic oceans.


2012 ◽  
Vol 42 (4) ◽  
pp. 602-627 ◽  
Author(s):  
Laurie L. Trenary ◽  
Weiqing Han

Abstract The relative importance of local versus remote forcing on intraseasonal-to-interannual sea level and thermocline variability of the tropical south Indian Ocean (SIO) is systematically examined by performing a suite of controlled experiments using an ocean general circulation model and a linear ocean model. Particular emphasis is placed on the thermocline ridge of the Indian Ocean (TRIO; 5°–12°S, 50°–80°E). On interannual and seasonal time scales, sea level and thermocline variability within the TRIO region is primarily forced by winds over the Indian Ocean. Interannual variability is largely caused by westward propagating Rossby waves forced by Ekman pumping velocities east of the region. Seasonally, thermocline variability over the TRIO region is induced by a combination of local Ekman pumping and Rossby waves generated by winds from the east. Adjustment of the tropical SIO at both time scales generally follows linear theory and is captured by the first two baroclinic modes. Remote forcing from the Pacific via the oceanic bridge has significant influence on seasonal and interannual thermocline variability in the east basin of the SIO and weak impact on the TRIO region. On intraseasonal time scales, strong sea level and thermocline variability is found in the southeast tropical Indian Ocean, and it primarily arises from oceanic instabilities. In the TRIO region, intraseasonal sea level is relatively weak and results from Indian Ocean wind forcing. Forcing over the Pacific is the major cause for interannual variability of the Indonesian Throughflow (ITF) transport, whereas forcing over the Indian Ocean plays a larger role in determining seasonal and intraseasonal ITF variability.


2017 ◽  
Vol 30 (21) ◽  
pp. 8447-8468 ◽  
Author(s):  
Weiqing Han ◽  
Gerald A. Meehl ◽  
Aixue Hu ◽  
Jian Zheng ◽  
Jessica Kenigson ◽  
...  

Previous studies have investigated the centennial and multidecadal trends of the Pacific and Indian Ocean Walker cells (WCs) during the past century, but have obtained no consensus owing to data uncertainties and weak signals of the long-term trends. This paper focuses on decadal variability (periods of one to few decades) by first documenting the variability of the WCs and warm-pool convection, and their covariability since the 1960s, using in situ and satellite observations and reanalysis products. The causes for the variability and covariability are then explored using a Bayesian dynamic linear model, which can extract nonstationary effects of climate modes. The warm-pool convection exhibits apparent decadal variability, generally covarying with the Indian and Pacific Ocean WCs during winter (November–April) with enhanced convection corresponding to intensified WCs, and the Indian–Pacific WCs covary. During summer (May–October), the warm-pool convection still highly covaries with the Pacific WC but does not covary with the Indian Ocean WC, and the Indian–Pacific WCs are uncorrelated. The wintertime coherent variability results from the vital influence of ENSO decadal variation, which reduces warm-pool convection and weakens the WCs during El Niño–like conditions. During summer, while ENSO decadal variability still dominates the Pacific WC, decadal variations of ENSO, the Indian Ocean dipole, Indian summer monsoon convection, and tropical Indian Ocean SST have comparable effects on the Indian Ocean WC overall, with monsoon convection having the largest effect since the 1990s. The complex causes for the Indian Ocean WC during summer result in its poor covariability with the Pacific WC and warm-pool convection.


Sign in / Sign up

Export Citation Format

Share Document