scholarly journals Recent Trends of Extreme Precipitation and Their Teleconnection with Atmospheric Circulation in the Beijing-Tianjin Sand Source Region, China, 1960–2014

Atmosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 83 ◽  
Author(s):  
Wei Wei ◽  
Zhongjie Shi ◽  
Xiaohui Yang ◽  
Zheng Wei ◽  
Yanshu Liu ◽  
...  
2022 ◽  
pp. 1-41

Abstract The interannual variation of springtime extreme precipitation (SEP) days in North China (NC) and their reliance on atmospheric circulation patterns are studied by using the continuous daily record of 396 rain gauges and the fifth generation of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2019. The SEP days are defined as the days when at least 10% of rain gauges in NC record daily precipitation no less than 10.5 mm. Results show that the number of SEP days shows large interannual variability but no significant trend in the study period. Using the objective classification method of the obliquely rotated principal analysis in T-mode, we classify the atmospheric circulation into five different patterns based on the geopotential height at 700 hPa. Three circulation patterns all have fronts and are associated with strong southerly wind, leading to 88% of SEP days in NC. The strong southerly wind may provide moisture and dynamic forcing for the frontal precipitation. The interannual variation of SEP days is related with the number of the three above-mentioned dominant circulation patterns. Further analysis shows that the West Pacific pattern could be one of the possible climate variability modes related to SEP days. This study reveals that the daily circulation pattern may be the linkage between SEP days and climate variability modes in NC.


2021 ◽  
Author(s):  
Juliette Blanchet ◽  
Antoine Blanc ◽  
Jean-Dominique Creutin

<p>We analyze recent trends in extreme precipitation in the Southwestern Alps and link these trends to changes in the atmospheric influences triggering extremes. We consider a high-resolution precipitation dataset of 1x1 km2 for the period 1958-2017. A robust method of trend estimation is considered, based on nonstationary extreme value distribution and a homogeneous neighborhood approach. The results show contrasting extreme precipitation trends depending on the season. Excluding autumn, the significant trends are mostly negative in the Mediterranean area, while the French Alps show more contrasted trends, in particular in winter with significant increasing extremes in the Western and Southern French Alps and decreasing extremes in the Northern French Alps and Swiss Valais. In autumn, most of Southern France shows significant increasing trends, with up to 100% increase in the 20-year return level between 1958 and 2017, while the Northern French Alps show decreasing extremes.<br>By comparing these trends to changes in the occurrence of the dominant weather patterns triggering the extremes, we show that part of the significant changes in extremes can be explained by changes in the dominant influences, particularly in the Mediterranean influenced region. We also show that part of the trends in extremes are explained by a shift in the seasonality of maxima. </p>


2018 ◽  
Vol 2018 ◽  
pp. 1-26
Author(s):  
Wei Wei ◽  
Baitian Wang ◽  
Kebin Zhang ◽  
Zhongjie Shi ◽  
Genbatu Ge ◽  
...  

In order to examine temperature changes and extremes in the Beijing-Tianjin Sand Source Region (BTSSR), ten extreme temperature indices were selected, categorized, and calculated spanning the period 1960–2014, and the spatiotemporal variability and trends of temperature and extremes on multitimescales in the BTSSR were investigated using the Mann-Kendall (M-K) test, Sen’s slope estimator, and linear regression. Results show that mean temperatures have increased and extreme temperature events have become more frequent. Annual temperature has recorded a significant increasing trend over the BTSSR, in which 51 stations exhibited significant increasing trends (p<0.05); winter temperature recorded the most significant increasing trend in the northwest subregion. All extreme temperature indices showed warming trends at most stations; a higher warming slope in extreme temperature mainly occurred along the northeast border and northwest border and in the central-southern mountain area. As extreme low temperature events decrease, vegetation damage due to freezing temperatures will reduce and low cold-tolerant plants may expand their distribution range northward to revegetate barren areas in the BTSSR. However, in water-limited areas of the BTSSR, increasing temperatures in the growing season may exacerbate stress associated with plants relying on precipitation due to higher temperatures combining with decreasing precipitation.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Pascal Yiou ◽  
Julien Cattiaux ◽  
Aurélien Ribes ◽  
Robert Vautard ◽  
Mathieu Vrac

A few types of extreme climate events in the North Atlantic region, such as heatwaves, cold spells, or high cumulated precipitation, are connected to the recurrence of atmospheric circulation patterns. Understanding those extreme events requires assessing long-term trends of the atmospheric circulation. This paper presents a set of diagnostics of the intra- and interannual recurrence of atmospheric patterns. Those diagnostics are devised to detect trends in the stability of the circulation and the return period of atmospheric patterns. We detect significant emerging trends in the winter circulation, pointing towards a potential increased predictability. No such signal seems to emerge in the summer. We find that the winter trends in the dominating atmospheric patterns and their recurrences do not depend of the patterns themselves.


1987 ◽  
Vol 28 (3) ◽  
pp. 323-339 ◽  
Author(s):  
John M. Chuey ◽  
David K. Rea ◽  
Nicklas G. Pisias

AbstractDetailed records of δ18O, δ13C, percentage and mass accumulation rate of CaCO3, and eolian percentage, mass accumulation rate, and grainsize generated for core RC11-210 from the equatorial Pacific reveal the timing of paleoclimatic events over the past 950,000 yr. The CaCO3 percentage record shows the standard Pacific correlation of high CaCO3 content with glacial periods, but displays a marked change of character about 490,000 yr ago with older stages showing much less variability. The carbonate mass flux record, however, does not show such a noticeable change. Sedimentation rates vary from about 0.5 to 3.0 cm/1000 yr and, during the past 490,000 yr, sections with enhanced sedimentation rates correspond to periods of high CaCO3 percentage. Eolian mass accumulation rates, an indication of the aridity of the source region, are usually higher during glacial times. Eolian grainsize, an indication of the intensity of atmospheric circulation, generally fluctuates at a higher frequency than the 100,000-yr glacial cycle. The mid-Brunhes climatic event centered at 300,000 yr ago appears as a 50,000-yr interval of low intensity and reduced variability of atmospheric circulation. Furthermore, the nature of this entire record changes then, with the younger portion indicating less variation in wind intensity than the older part of the record. The late Matuyama increase in amplitude of paleoclimatic signals begins 875,000 yr ago in the eolian record, 25,000 yr before the δ18O and CaCO3 percentage amplitude increases about 850,000 yr ago.


1991 ◽  
Vol 35 (3-Part1) ◽  
pp. 417-426 ◽  
Author(s):  
Glenn A. Goodfriend

AbstractThe δ18O value of the carbonate of land snail shells is related to the 18O content of precipitation, which in turn relates to the source region and trajectory of the rain-bearing air masses. Analyses of 18O of the shell carbonate of 76 radiocarbon-dated Holocene samples of the land snail Trochoidea seetzeni from the northern Negev Desert in southern Israel were carried out and the results were compared to modern snails from the same region. Early Holocene δ18O values are similar to modern but during the period centered around 6500-6000 yr B.P., a depletion of some 2%. below modern is observed. A change in the atmospheric circulation pattern for this period is thus indicated, most likely an increase in the frequency of storm systems reaching the region from north-eastern Africa. By 3500 yr B.P., δ18O values had reached modern levels and indicate a stable pattern of atmospheric circulation since that time.


Sign in / Sign up

Export Citation Format

Share Document