scholarly journals Functionalizing Fibrin Hydrogels with Thermally Responsive Oligonucleotide Tethers for On-Demand Delivery

2022 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Chase S. Linsley ◽  
Kevin Sung ◽  
Cameron White ◽  
Cara A. Abecunas ◽  
Bill J. Tawil ◽  
...  

There are a limited number of stimuli-responsive biomaterials that are capable of delivering customizable dosages of a therapeutic at a specific location and time. This is especially true in tissue engineering and regenerative medicine applications, where it may be desirable for the stimuli-responsive biomaterial to also serve as a scaffolding material. Therefore, the purpose of this study was to engineer a traditionally non-stimuli responsive scaffold biomaterial to be thermally responsive so it could be used for on-demand drug delivery applications. Fibrin hydrogels are frequently used for tissue engineering and regenerative medicine applications, and they were functionalized with thermally labile oligonucleotide tethers using peptides from substrates for factor XIII (FXIII). The alpha 2-plasmin inhibitor peptide had the greatest incorporation efficiency out of the FXIII substrate peptides studied, and conjugates of the peptide and oligonucleotide tethers were successfully incorporated into fibrin hydrogels via enzymatic activity. Single-strand complement oligo with either a fluorophore model drug or platelet-derived growth factor-BB (PDGF-BB) could be released on demand via temperature increases. These results demonstrate a strategy that can be used to functionalize traditionally non-stimuli responsive biomaterials suitable for on-demand drug delivery systems (DDS).

RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40206-40214
Author(s):  
Wararat Montha ◽  
Weerakanya Maneeprakorn ◽  
I-Ming Tang ◽  
Weeraphat Pon-On

Drug delivery particles in which the release of biomolecules is triggered by a magnetic simulant have attracted much attention and may have great potential in the fields of cancer therapy and tissue regenerative medicine.


2021 ◽  
Vol 9 (1) ◽  
pp. 38-50
Author(s):  
Hien Phan ◽  
Vincenzo Taresco ◽  
Jacques Penelle ◽  
Benoit Couturaud

Stimuli-responsive amphiphilic block copolymers obtained by PISA have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, redox agents, light or temperature.


Soft Matter ◽  
2021 ◽  
Author(s):  
Michael Meleties ◽  
Priya Katyal ◽  
Bonnie Lin ◽  
Dustin Britton ◽  
Jin Kim Montclare

Owing to their tunable properties, hydrogels comprised of stimuli sensitive polymers are one of the most appealing scaffolds with applications in tissue engineering, drug delivery and other biomedical fields. We...


2021 ◽  
Vol 11 (23) ◽  
pp. 11369
Author(s):  
Ashni Arun ◽  
Pratyusha Malrautu ◽  
Anindita Laha ◽  
Hongrong Luo ◽  
Seeram Ramakrishna

The versatile natural polymer, collagen, has gained vast attention in biomedicine. Due to its biocompatibility, biodegradability, weak antigenicity, biomimetics and well-known safety profile, it is widely used as a drug, protein and gene carrier, and as a scaffold matrix in tissue engineering. Nanoparticles develop favorable chemical and physical properties such as increased drug half-life, improved hydrophobic drug solubility and controlled and targeted drug release. Their reduced toxicity, controllable characteristics of scaffolds and stimuli-responsive behavior make them suitable in regenerative medicine and tissue engineering. Collagen associates and absorbs nanoparticles leading to significant impacts on their biological functioning in any biofluid. This review will discuss collagen nanoparticle preparation methods and their applications and developments in drug delivery systems and tissue engineering.


The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


2020 ◽  
Vol 8 (7) ◽  
pp. 481 ◽  
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Natalia N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Andrey V. Kalinin

The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.


2019 ◽  
Vol 296 ◽  
pp. 93-106 ◽  
Author(s):  
Ying Qu ◽  
Bingyang Chu ◽  
Xiawei Wei ◽  
Minyi Lei ◽  
Danrong Hu ◽  
...  

2014 ◽  
Vol 66 ◽  
pp. 58-73 ◽  
Author(s):  
Yuanpei Li ◽  
Kai Xiao ◽  
Wei Zhu ◽  
Wenbin Deng ◽  
Kit S. Lam

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1319
Author(s):  
Baljinder Singh ◽  
Nutan Shukla ◽  
Junkee Kim ◽  
Kibeom Kim ◽  
Myoung-Hwan Park

On-demand drug delivery systems using nanofibers have attracted significant attention owing to their controllable properties for drug release through external stimuli. Near-infrared (NIR)-responsive nanofibers provide a platform where the drug release profile can be achieved by the on-demand supply of drugs at a desired dose for cancer therapy. Nanomaterials such as gold nanorods (GNRs) exhibit absorbance in the NIR range, and in response to NIR irradiation, they generate heat as a result of a plasmon resonance effect. In this study, we designed poly (N-isopropylacrylamide) (PNIPAM) composite nanofibers containing GNRs. PNIPAM is a heat-reactive polymer that provides a swelling and deswelling property to the nanofibers. Electrospun nanofibers have a large surface-area-to-volume ratio, which is used to effectively deliver large quantities of drugs. In this platform, both hydrophilic and hydrophobic drugs can be introduced and manipulated. On-demand drug delivery systems were obtained through stimuli-responsive nanofibers containing GNRs and PNIPAM. Upon NIR irradiation, the heat generated by the GNRs ensures shrinking of the nanofibers owing to the thermal response of PNIPAM, thereby resulting in a controlled drug release. The versatility of the light-responsive nanofibers as a drug delivery platform was confirmed in cell studies, indicating the advantages of the swelling and deswelling property of the nanofibers and on–off drug release behavior with good biocompatibility. In addition, the system has potential for the combination of chemotherapy with multiple drugs to enhance the effectiveness of complex cancer treatments.


Sign in / Sign up

Export Citation Format

Share Document