scholarly journals Alleviation of Copper-Induced Stress in Pea (Pisum sativum L.) through Foliar Application of Gibberellic Acid

Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 120
Author(s):  
Talha Javed ◽  
Muhammad Moaaz Ali ◽  
Rubab Shabbir ◽  
Raheel Anwar ◽  
Irfan Afzal ◽  
...  

Copper (Cu) is an essential metal for plants. However, its excess in soil can adversely affect plant metabolism. The current study evaluated the effects of gibberellic acid (GA3) foliar applications on the performance of pea plants grown either in Cu-contaminated (Cu+) and non-contaminated (Cu−) soil. GA3 was sprayed (0, 10, 50, and 100 mg·L−1) on 15-days-old plants. The results showed that the increasing concentration of GA3 buffered the phytotoxic effects of Cu and enhanced plant growth, photosynthesis, and leaf chlorophyll content. Foliar-sprayed GA3 up to 100 mg·L−1 alleviated the oxidative stress, as inferred from the lower concentrations of MDA and H2O2 (33.3 µmol·g−1 and 182 µmol·g−1, respectively), and boosted the activity of superoxide dismutase (64.4 U·g−1·FW), peroxidase (122.7 U·g−1·FW), and catalase (226.3 U·g−1·FW). Interestingly, GA3 promoted Cu accumulation in different plant parts when compared to untreated plants, likely due to increased photosynthetic and transpiration rates. Overall, foliar application of GA3 promoted phytoextraction of Cu and alleviated the oxidative stress in pea plants grown in Cu+ soil.

1994 ◽  
Vol 62 (4) ◽  
pp. 867-875 ◽  
Author(s):  
Hiroyuki Itamura ◽  
Tadaaki Fukushima ◽  
Toshio Kitamura ◽  
Hisashi Harada ◽  
Satoshi Taira ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 529
Author(s):  
Magdalina Melkonyan ◽  
Ashkhen Manukyan ◽  
Lilit Hunanyan ◽  
Artem Grigoryan ◽  
Hayk Harutyunyan ◽  
...  

Noise is a wide-spread stress factor in modern life produced by urbanization, traffic, and an industrialized environment. Noise stress causes dysfunction and neurotransmission impairment in the central nervous system, as well as changes in hormone levels. In this study, we have examined the level of α-Tocopherol (α-T) and malondialdehyde (MDA) in plasma and the erythrocytes’ membrane (EM), as well as the behavioral characteristics of a noise-induced stress model in rats. In addition, the modulating effect of α2-adrenoblockers, beditin, and mesedin on the aforementioned parameters has been investigated. For these purposes, albino male rats were divided into four groups: (1) untreated; (2) noise-exposed, (3) noise-exposed and beditin-treated (2 mg/kg, i.p.), and (4) noise-exposed and mesedin-treated (10 mg/kg, i.p.) animals. Noise-exposed groups were treated with 91dBA noise on 60 days with a daily duration of 8 h. Increased MDA and decreased α-T levels in plasma and EM were observed upon chronic high-level noise exposure. Locomotor and behavioral activity assessed with a Y-maze revealed disorientation and increased anxiety under chronic noise exposure. Prominently, α2-adrenoblockers alleviated both behavioral deficits and oxidative stress, providing evidence for the involvement of α2-adrenoceptor in the pathophysiology of noise-induced stress.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2224
Author(s):  
Mira Rahman ◽  
Khussboo Rahman ◽  
Khadeja Sultana Sathi ◽  
Md. Mahabub Alam ◽  
Kamrun Nahar ◽  
...  

The present investigation was executed with an aim to evaluate the role of exogenous selenium (Se) and boron (B) in mitigating different levels of salt stress by enhancing the reactive oxygen species (ROS) scavenging, antioxidant defense and glyoxalase systems in soybean. Plants were treated with 0, 150, 300 and 450 mM NaCl at 20 days after sowing (DAS). Foliar application of Se (50 µM Na2SeO4) and B (1 mM H3BO3) was accomplished individually and in combined (Se+B) at three-day intervals, at 16, 20, 24 and 28 DAS under non-saline and saline conditions. Salt stress adversely affected the growth parameters. In salt-treated plants, proline content and oxidative stress indicators such as malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were increased with the increment of salt concentration but the relative water content decreased. Due to salt stress catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glyoxalase I (Gly I) and glyoxalase II (Gly II) activity decreased. However, the activity of ascorbate peroxidase (APX), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST) and peroxidase (POD) increased under salt stress. On the contrary, supplementation of Se, B and Se+B enhanced the activities of APX, MDHAR, DHAR, GR, CAT, GPX, GST, POD, Gly I and Gly II which consequently diminished the H2O2 content and MDA content under salt stress, and also improved the growth parameters. The results reflected that exogenous Se, B and Se+B enhanced the enzymatic activity of the antioxidant defense system as well as the glyoxalase systems under different levels of salt stress, ultimately alleviated the salt-induced oxidative stress, among them Se+B was more effective than a single treatment.


2018 ◽  
Vol 1 (4) ◽  
pp. e201800113 ◽  
Author(s):  
Maximilian Anders ◽  
Irina Chelysheva ◽  
Ingrid Goebel ◽  
Timo Trenkner ◽  
Jun Zhou ◽  
...  

Reversible post-transcriptional modifications on messenger RNA emerge as prevalent phenomena in RNA metabolism. The most abundant among them is N6-methyladenosine (m6A) which is pivotal for RNA metabolism and function; its role in stress response remains elusive. We have discovered that in response to oxidative stress, transcripts are additionally m6A modified in their 5′ vicinity. Distinct from that of the translationally active mRNAs, this methylation pattern provides a selective mechanism for triaging mRNAs from the translatable pool to stress-induced stress granules. These stress-induced newly methylated sites are selectively recognized by the YTH domain family 3 (YTHDF3) “reader” protein, thereby revealing a new role for YTHDF3 in shaping the selectivity of stress response. Our findings describe a previously unappreciated function for RNA m6A modification in oxidative-stress response and expand the breadth of physiological roles of m6A.


2021 ◽  
Vol 5 (4) ◽  
pp. 977-983
Author(s):  
Petro Fedyshyn ◽  
Oleh Smirnov ◽  
Liliia Kalachniuk

Studies of preparations that decrease oxidative stress and, as a consequence, that can prevent or reduce the development of alcoholic liver disease are relevant. A wide range of drugs, the bioprotective effect of which is studied, in its action is associated with natural antioxidant systems. Therefore, the study of the features of these systems is necessary for the effective development of bio protectors. The aim is to analyze changes in the quantitative and qualitative composition of amino acids involved in antioxidant mechanisms in the presence of alcohol-induced stress in rats. In the presence of alcohol-induced oxidative stress, there are changes in the quantitative and qualitative composition of amino acids (methionine, serine, taurine), which are involved in the mechanisms of antioxidant protection - cycles of S-adenosylmethionine and glutathione. A slight increase in methionine levels in the blood serum of animals of the experimental group and disruption of the recovery cycle of methionine under alcohol-induced oxidative stress are arguments for the ineffectiveness of S-adenosylmethionine as a bioprotective substance. The same decrease in the level of serine (by 15%) and taurine (by 13%), and analysis of literature data, may be indicate the "secondary" nature of glutathione as an antioxidant compared to taurine.


Sign in / Sign up

Export Citation Format

Share Document