scholarly journals Neurotherapeutic Potential of Cervus elaphus Sibericus on Axon Regeneration and Growth Cone Reformation after H2O2-Induced Injury in Rat Primary Cortical Neurons

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 833
Author(s):  
Jin Young Hong ◽  
Junseon Lee ◽  
Hyunseong Kim ◽  
Wan-Jin Jeon ◽  
Changhwan Yeo ◽  
...  

Cervus elaphus sibericus (CES), commonly known as deer antler, has been used as a medicinal herb because of its various pharmacological activities, including its anti-infective, anti-arthritic, anti-allergic, and anti-oxidative properties. However, the precise mechanisms by which CES functions as a potent anti-oxidative agent remain unknown; particularly, the effects of CES on cortical neurons and its neurobiological mechanism have not been examined. We used primary cortical neurons from the embryonic rat cerebral cortex and hydrogen peroxide to induce oxidative stress and damage in neurons. After post-treatment of CES at three concentrations (10, 50, and 200 µg/mL), the influence of CES on the neurobiological mechanism was assessed by immunocytochemistry, flow cytometry, and real-time PCR. CES effectively prevented neuronal death caused by hydrogen peroxide-induced damage by regulating oxidative signaling. In addition, CES significantly induced the expression of brain-derived neurotrophic factor and neurotrophin nerve growth factor, as well as regeneration-associated genes. We also observed newly processing elongated axons after CES treatment under oxidative conditions. In addition, filopodia tips generally do not form a retraction bulb, called swollen endings. Thus, CES shows therapeutic potential for treating neurological diseases by stimulating neuron repair and regeneration.

Author(s):  
Tao Chen ◽  
Li-Kun Yang ◽  
Jie Zhu ◽  
Chun-Hua Hang ◽  
Yu-Hai Wang

Background: Perampanel is a highly selective and non-competitive α-amino-3-hydroxy-5 -methyl-4-isoxazole propionate (AMPA) receptor (AMPAR) antagonist, which has been licensed as an orally administered antiepileptic drug in more than 55 countries. Recently, perampanel was found to exert neuroprotective effects in hemorrhagic and ischemic stroke models. Objective: In this study, the protective effect of perampanel was investigated. Method: The protective effect of perampanel was investigated in an in vitro traumatic neuronal injury (TNI) model in primary cultured cortical neurons. Conclusion: Our present data suggest that necroptosis plays a key role in the pathogenesis of neuronal death after TNI, and that perampanel might have therapeutic potential for patients with traumatic brain injury (TBI).


Author(s):  
Moon Yi Ko ◽  
Sung-Ae Hyun ◽  
Sumi Jang ◽  
Joung-Wook Seo ◽  
Jaerang Rho ◽  
...  

2011 ◽  
Vol 49 (11) ◽  
pp. 2862-2868 ◽  
Author(s):  
Susana M. Cardoso ◽  
Márcio Ribeiro ◽  
Ildete L. Ferreira ◽  
A. Cristina Rego

2021 ◽  
Author(s):  
Yonghui Hou ◽  
Jiyao Luan ◽  
Tiancheng Deng ◽  
Taida Huang ◽  
Xing Li ◽  
...  

Abstract Background Tauroursodeoxycholic acid (TUDCA) is a hydrophilic bile acid derivative, which has been demonstrated to have neuroprotective effects in different neurological disease models. However, the effect and underlying mechanism of TUDCA on spinal cord injury (SCI) have not been fully elucidated. This study is aim to investigate the protective effects of TUDCA in SCI mouse model and the related mechanism involved.Methods The primary cortical neurons were isolated from E16.5 C57BL/6 mouse embryos. To evaluate the effect of TUDCA on oxidative stress in vitro, the cortical neurons were treated with H2O2 with or without TUDCA added. Mice were randomly divided into sham, SCI and TUDCA groups. SCI model was induced using a pneumatic impact device at T9-T10 level of vertebra. TUDCA (200 mg/kg) or equal volume of saline was intragastrically administrated daily post injury for 14 days. ResultsWe found that TUDCA reduced reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release and restored superoxide dismutase (SOD) activity to protect primary cortical neurons from oxidative stress in vitro. In vivo, TUDCA treatment significantly reduced tissue injury, oxidative stress, inflammatory response, and apoptosis; promoted axon regeneration and remyelination in the lesion site of spinal cord of SCI mice. The functional recovery test revealed that TUDCA treatment significantly ameliorated recovery of limb function.ConclusionsTUDCA treatment can alleviate secondary injury and promote functional recovery through reducing oxidative stress, inflammatory response and apoptosis induced by primary injury, and promote axon regeneration and remyelination, which could be used as a potential therapy for human SCI recovery.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yonghui Hou ◽  
Jiyao Luan ◽  
Taida Huang ◽  
Tiancheng Deng ◽  
Xing Li ◽  
...  

Abstract Background Tauroursodeoxycholic acid (TUDCA) is a hydrophilic bile acid derivative, which has been demonstrated to have neuroprotective effects in different neurological disease models. However, the effect and underlying mechanism of TUDCA on spinal cord injury (SCI) have not been fully elucidated. This study aims to investigate the protective effects of TUDCA in the SCI mouse model and the related mechanism involved. Methods The primary cortical neurons were isolated from E16.5 C57BL/6 mouse embryos. To evaluate the effect of TUDCA on axon degeneration induced by oxidative stress in vitro, the cortical neurons were treated with H2O2 with or without TUDCA added and immunostained with Tuj1. Mice were randomly divided into sham, SCI, and SCI+TUDCA groups. SCI model was induced using a pneumatic impact device at T9-T10 level of the vertebra. TUDCA (200 mg/kg) or an equal volume of saline was intragastrically administrated daily post-injury for 14 days. Results We found that TUDCA attenuated axon degeneration induced by H2O2 treatment and protected primary cortical neurons from oxidative stress in vitro. In vivo, TUDCA treatment significantly reduced tissue injury, oxidative stress, inflammatory response, and apoptosis and promoted axon regeneration and remyelination in the lesion site of the spinal cord of SCI mice. The functional recovery test revealed that TUDCA treatment significantly ameliorated the recovery of limb function. Conclusions TUDCA treatment can alleviate secondary injury and promote functional recovery by reducing oxidative stress, inflammatory response, and apoptosis induced by primary injury, and promote axon regeneration and remyelination, which could be used as a potential therapy for human SCI recovery.


2019 ◽  
Vol 19 (16) ◽  
pp. 1298-1368 ◽  
Author(s):  
Ankit Jain ◽  
Poonam Piplani

: Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological properties, which could play a major role in the common mechanisms associated with various disorders like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural modification of this scaffold could be helpful in the generation of new therapeutically useful agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole, there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives has also been incorporated. The objective of the review is to provide insights to designing and synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.


Author(s):  
Vijay Kumar

: Mimosa pudica Linn is an integrated part of Traditional Medicines Systems of India, China, Africa, Korea and America. It has been used from centuries in traditional medicines to cure different diseases like fever, diabetes, constipation, jaundice, ulcers, biliousness, and dyspepsia. It is an important ingredient of wide class of herbal formulations. To assess the scientific evidence for therapeutic potential of Mimosa pudica Linn and to identify the gaps for future research. The available information on the ethno-medicinal uses, phytochemistry, pharmacology and toxicology of Mimosa pudica Linn was collected via a library and electronic searches in Sci-Finder, Pub-Med, Science Direct, Google Scholar for the period, 1990 to 2020. In traditional medicinal systems, variety of ethno-medicinal applications of Mimosa pudica Linn has been noticed. Phytochemical investigation has resulted in identification of 40 well known chemical constituents, among which alkaloids, phenols and flavionoids are the predominant groups. The crude extracts and isolates have exhibited a wide spectrum of in vitro and in vivo pharmacological activities including anti-cancer, anti-inflammation, osteoporosis, neurological disorders, hypertension etc.. To quantify the Mimosa pudica Linn and its formulations, analytical techniques like HPLC and HPTLC has shown dominancy with good range of recovery and detection limit. Mimosa pudica Linn is the well-known herb since an ancient time. The pharmacological results supported some of the applications of Mimosa pudica Linn in traditional medicine systems. Perhaps, the predominance of alkaloids, phenols and flavionoids are responsible for the pharmacological activities the crude extracts and isolates of Mimosa pudica Linn. Further, there is need to isolate and evaluate the active chemical constituents of Mimosa pudica Linn having significant medicinal values. In future, it is important to study the exact mechanism associated with the phytochemicals of Mimosa pudica Linn especially on anti-cancer activities. Notably, toxicity studies on Mimosa pudica Linn are limited which are to be explored in future for the safe application of Mimosa pudica Linn and its formulations.


Sign in / Sign up

Export Citation Format

Share Document