scholarly journals Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 452 ◽  
Author(s):  
Umar M. Badeggi ◽  
Enas Ismail ◽  
Adewale O. Adeloye ◽  
Subelia Botha ◽  
Jelili A. Badmus ◽  
...  

In this study, procyanidins fractions of dimers and trimers (F1–F2) from the Leucosidea sericea total extract (LSTE) were investigated for their chemical constituents. The total extract and the procyanidins were employed in the synthesis of gold nanoparticles (Au NPs) and fully characterized. Au NPs of 6, 24 and 21 nm were obtained using LSTE, F1 and F2 respectively. Zeta potential and in vitro stability studies confirmed the stability of the particles. The enzymatic activity of LSTE, F1, F2 and their corresponding Au NPs showed strong inhibitory alpha-amylase activity where F1 Au NPs demonstrated the highest with IC50 of 1.88 µg/mL. On the other hand, F2 Au NPs displayed the strongest alpha-glucosidase activity at 4.5 µg/mL. F2 and F2 Au NPs also demonstrated the highest antioxidant activity, 1834.0 ± 4.7 μM AAE/g and 1521.9 ± 3.0 μM TE/g respectively. The study revealed not only the ability of procyanidins dimers (F1 and F2) in forming biostable and bioactive Au NPs but also, a significant enhancement of the natural products activities, which could improve the smart delivery in future biomedical applications.

2020 ◽  
Vol 39 (3) ◽  
Author(s):  
U.M. Badeggi ◽  
B.A. Lawal ◽  
A.O. Akinfenwa ◽  
Y.O. Ayipo ◽  
Y. Azeh ◽  
...  

In the present study, Pelargonium sidoides (PS) extract was used in the green synthesis of AuNPs that was characterized by UV-Vis, TEM, SAED, EDS, XRD, FTIR, and DLS. UV-Vis showed a surface plasmon resonance (SPR) at λmax of 532 nm while TEM shows that the particles are predominantly spherical and monodispersed. DLS measurement indicated the particle size and the zeta potential to be 27.20 nm and -24.0 mV respectively. The in vitro stability of the hybrid particles in different solutions and buffers (pH 7 and 9) confirmed that the particles are stable over a given period. The method employed is simple, environmentally friendly, and inexpensive. Our studies suggest that the Pelargonium sidoides-gold nanoparticles (PS-AuNPs) may be safely used in biomedical applications such as drug delivery. Keywords: Pelargonium sidoides; biosynthesis; biomedicals; capping agent; zeta potential


2018 ◽  
Vol 8 (12) ◽  
pp. 2589 ◽  
Author(s):  
Hasan Aldewachi ◽  
Nicola Woodroofe ◽  
Philip Gardiner

In this report, we investigated three stabilization strategies of gold nanoparticles and their practical application for the visual detection of dipeptidyl peptidase IV (DPP-IV). Citrate-capped gold nanoparticles (Au NPs) are generally unstable in high-ionic-strength samples. Au NPs are easily tagged with various proteins and biomolecules rich in amino acids, leading to important biomedical applications including targeted drug delivery, cellular imaging, and biosensing. The investigated assays were based on different modes of stabilization, such as the incorporation of polyethylene glycol (PEG) groups, stabilizer peptide, and bifunctionalization. Although all approaches provided highly stable Au NP platforms demonstrated by zeta potential measurements and resistance to aggregation in a high-ionic-strength saline solution, we found that the Au NPs modified with a separate stabilizer ligand provided the highest stability and was the only platform that demonstrated sensitivity to the addition of DPP-IV, whilst PEGylated and peptide-stabilized Au NPs showed no significant response.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1094
Author(s):  
Allan Radaic ◽  
Nam E. Joo ◽  
Soo-Hwan Jeong ◽  
Seong-II Yoo ◽  
Nicholas Kotov ◽  
...  

Prostate and breast cancer are the current leading causes of new cancer cases in males and females, respectively. Phosphatidylserine (PS) is an essential lipid that mediates macrophage efferocytosis and is dysregulated in tumors. Therefore, developing therapies that selectively restore PS may be a potential therapeutic approach for carcinogenesis. Among the nanomedicine strategies for delivering PS, biocompatible gold nanoparticles (AuNPs) have an extensive track record in biomedical applications. In this study, we synthesized biomimetic phosphatidylserine-caped gold nanoparticles (PS-AuNPs) and tested their anticancer potential in breast and prostate cancer cells in vitro. We found that both cell lines exhibited changes in cell morphology indicative of apoptosis. After evaluating for histone-associated DNA fragments, a hallmark of apoptosis, we found significant increases in DNA fragmentation upon PS-AuNP treatment compared to the control treatment. These findings demonstrate the use of phosphatidylserine coupled with gold nanoparticles as a potential treatment for prostate and breast cancer. To the best of our knowledge, this is the first time that a phosphatidylserine-capped AuNP has been examined for its therapeutic potential in cancer therapy.


2019 ◽  
Vol 1 (6) ◽  
pp. 135-143
Author(s):  
Krishnagowdu Saravanan ◽  
Jayachandran Halka ◽  
Kumaresan Kowsalya ◽  
Muthukrishnan Arun

Higher plants are prominent sources for several bioactive chemical constituents (secondary metabolites) who include photochemical, flavoring agents, fragrant molecules, and food additives. According to WHO estimates, it has been reported that more than 80% of population in developing countries prefer these natural bioactive active compounds for their primary health requirement. At present, conventional chemotherapy is constrained due to the nonselective toxicity to human organs and their usage is limited now a days. In a recent survey, more than 60% of cancer patients have been preferring adjuvant phototherapy along with chemotherapy. Thus, photochemical are being widely used as anticancer agents to target specific pathological pathways underlying cancer with low toxic profiles and side effects. These photochemical are cost-effective and easily accessible to the public to treat cancer diseases. These bioactive photochemical are meticulously belongs to secondary metabolites such as alkaloids, flavonoids, polyphenols.Among them, the flavonoids are polyphenolic substances, which are found in all parts of the plant such as flowers, fruits, leaves, roots, seeds, and bark. They possess high medicinal properties like being anti-cancer, anti-hypertensive, anti-inflammatory, anti-obesity, anti-malarial, antioxidant agents. Quercetin is major flavones associated with a profound antioxidant and medicinal property to prevent the oxidation of lipids in vitro and in vivo, and also exhibits direct proapoptotic effects on tumor cells. This compound has proven efficacy in targeting several cancer cells of breast, colon, prostate, ovarian, and lung tumor in vitro. The present review focuses on the effect of quercetin in cancer therapy.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1962 ◽  
Author(s):  
Alexis Loiseau ◽  
Julien Boudon ◽  
Alexandra Oudot ◽  
Mathieu Moreau ◽  
Romain Boidot ◽  
...  

Nanohybrids based on titanate nanotubes (TiONts) were developed to fight prostate cancer by intratumoral (IT) injection, and particular attention was paid to their step-by-step synthesis. TiONts were synthesized by a hydrothermal process. To develop the custom-engineered nanohybrids, the surface of TiONts was coated beforehand with a siloxane (APTES), and coupled with both dithiolated diethylenetriaminepentaacetic acid-modified gold nanoparticles (Au@DTDTPA NPs) and a heterobifunctional polymer (PEG3000) to significantly improve suspension stability and biocompatibility of TiONts for targeted biomedical applications. The pre-functionalized surface of this scaffold had reactive sites to graft therapeutic agents, such as docetaxel (DTX). This novel combination, aimed at retaining the AuNPs inside the tumor via TiONts, was able to enhance the radiation effect. Nanohybrids have been extensively characterized and were detectable by SPECT/CT imaging through grafted Au@DTDTPA NPs, radiolabeled with 111In. In vitro results showed that TiONts-AuNPs-PEG3000-DTX had a substantial cytotoxic activity on human PC-3 prostate adenocarcinoma cells, unlike initial nanohybrids without DTX (Au@DTDTPA NPs and TiONts-AuNPs-PEG3000). Biodistribution studies demonstrated that these novel nanocarriers, consisting of AuNP- and DTX-grafted TiONts, were retained within the tumor for at least 20 days on mice PC-3 xenografted tumors after IT injection, delaying tumor growth upon irradiation.


2007 ◽  
Vol 342-343 ◽  
pp. 781-784 ◽  
Author(s):  
Han Hee Cho ◽  
Kazuaki Matsumura ◽  
Naoki Nakajima ◽  
Dong Wook Han ◽  
Sadami Tsutsumi ◽  
...  

Stabilization of the fibrous protein collagen is important in biomedical applications. This study investigated the efficacy of degradation control of collagen using (-)-epigallocatechin-3-Ogallate (EGCG). EGCG treatment of collagen in solid state was carried out and collagen sponges produced were characterized by measuring the physicochemical properties such as gel fraction, the enzymatic degradability and cytocompatibility. According to gel fraction, EGCG-treated sponges showed the increase of insolubility compared to intact sponges. It showed that EGCG played a role in a crosslinker of collagen. Through in vitro enzymatic degradation test, EGCG-treated collagen sponges showed significant enhancement of resistance to collagenase in comparison with 25 mM EDC-treated collagen sponges. Also, cell proliferation assays showed that 40 mM EGCG-treated collagen sponges exhibited similar cytocompatibility properties compared with tissue culture plate. In summary, EGCG treatment of collagen sponges increased the stability of collagen. Therefore, crosslinking of collagen based scaffold with EGCG imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications.


MRS Advances ◽  
2018 ◽  
Vol 3 (40) ◽  
pp. 2373-2378 ◽  
Author(s):  
Sandra E. Nájera ◽  
Monica Michel ◽  
Nam-Soo Kim

ABSTRACTPolymer composites of Polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2) were developed for biomedical applications. These composite materials were prepared, and then printed using Fused Deposition Modeling (FDM). 3D printed structures were characterized to determine their mechanical properties and biocompatibility. DSC analysis yielded useful information regarding the immiscibility of the different polymers, and it was observed that the particles of TiO2 improved the stability of the polymers. The ultimate tensile strength and the fracture strain increased by adding TiO2 as a filler, resulting in values of approximately 45 MPa and 5.5 % elongation. The printed composites show excellent in vitro biocompatibility including cell proliferation and adhesion, and are therefore promising candidates to be used in the biomedical field for bone replacement procedures, due to their properties similar to those of cancellous bone.


2020 ◽  
Author(s):  
Lin Qiu ◽  
Hui Tan ◽  
Qingyu Lin ◽  
Zhan Si ◽  
Jun Zhou ◽  
...  

Abstract Objective: Previously, we successfully developed a pretargeted imaging strategy (Atezolizumab-TCO/99mTc-HYNIC-PEG11-Tz), which is a powerful tool for evaluating Programmed Cell Death Ligand-1 (PD-L1) expression in xenograft mice tumor models. However, the surplus unclicked 99mTc-HYNIC-PEG11-Tz is cleared somewhat sluggishly through the intestines. This is certainly not an ideal situation for imaging for colorectal cancer (CRC). In order to shift the excretion of the Tz-radioligand to the renal system, we have sought to develop a novel Tz-radioligand by adding a polypeptide linker between HYNIC and PEG11. Methods: Pretargeted molecular probes 99mTc-HYNIC-Polypeptide-PEG11-Tz and Cetuximab-TCO were synthesized. The stability of 99mTc-HYNIC-Polypeptide-PEG11-Tz was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. In vitro ligation reactivity of 99mTc-HYNIC-Polypeptide-PEG11-Tz towards Cetuximab-TCO was tested. The biodistribution and imaging of 99mTc-HYNIC-Polypeptide-PEG11-Tz was performed to observe the clear pathway of this novel Tz-radioligand. Pretargeted biodistribution of three different accumulation intervals was performed to determine the optimal pretargeted interval time. Comparison of pretargeted (Cetuximab-TCO 48 h/99mTc-HYNIC-PEG11-Tz 6 h) and (Cetuximab-TCO 48 h/99mTc-HYNIC-Polypeptide-PEG11-Tz 6 h) imagings was performed to show the effect of the two Tz-radioligands with different excretion pathway on tumor imaging. Results: 99mTc-HYNIC-Polypeptide-PEG11-Tz showed favorable in vitro stability and rapid blood clearance in mice. SEC-HPLC revealed almost complete reaction between Cetuximab-TCO and 99mTc-HYNIC-Polypeptide-PEG11-Tz in vitro, with the 8:1 Tz-to-mAb reaction providing a conversion yield of 87.83 ± 3.27%. The biodistribution and imaging of 99mTc-HYNIC-Polypeptide-PEG11-Tz demonstrated that the Tz-radioligand was cleared through kidneys. After allowing 24 h, 48 h and 72 h for accumulation of Cetuximab-TCO in HCT116 tumor, pretargeted biodistribution revealed the tumor-to-blood ratio was 0.83 ± 0.13, 1.40 ± 0.31, and 1.15 ± 0.21, respectively. Both pretargeted (Cetuximab-TCO 48 h/99mTc-HYNIC-PEG11-Tz 6 h) and (Cetuximab-TCO 48 h/99mTc-HYNIC-Polypeptide-PEG11-Tz 6 h) imaging delineated the HCT116 tumor clearly. However, pretargeted imaging strategy using Cetuximab-TCO/99mTc-HYNIC-Polypeptide-PEG11-Tz could be used for diagnosing CRC since the surplus unclicked 99mTc-HYNIC-Polypeptide-PEG11-Tz is cleared through urinary system and produces low abdominal uptake background. Conclusion: We developed a novel pretargeted imaging strategy (Cetuximab-TCO/99mTc-HYNIC-Polypeptide-PEG11-Tz) for imaging CRC since the surplus unclicked 99mTc-HYNIC-Polypeptide-PEG11-Tz produces low abdominal uptake background, which broadens the application scope of pretargeted imaging strategy.


Sign in / Sign up

Export Citation Format

Share Document