scholarly journals Alarming Cargo: The Role of Exosomes in Trauma-Induced Inflammation

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 522
Author(s):  
Sarah A. Walsh ◽  
Benjamin W. Hoyt ◽  
Cassie J. Rowe ◽  
Devaveena Dey ◽  
Thomas A. Davis

Severe polytraumatic injury initiates a robust immune response. Broad immune dysfunction in patients with such injuries has been well-documented; however, early biomarkers of immune dysfunction post-injury, which are critical for comprehensive intervention and can predict the clinical course of patients, have not been reported. Current circulating markers such as IL-6 and IL-10 are broad, non-specific, and lag behind the clinical course of patients. General blockade of the inflammatory response is detrimental to patients, as a certain degree of regulated inflammation is critical and necessary following trauma. Exosomes, small membrane-bound extracellular vesicles, found in a variety of biofluids, carry within them a complex functional cargo, comprised of coding and non-coding RNAs, proteins, and metabolites. Composition of circulating exosomal cargo is modulated by changes in the intra- and extracellular microenvironment, thereby serving as a homeostasis sensor. With its extensively documented involvement in immune regulation in multiple pathologies, study of exosomal cargo in polytrauma patients can provide critical insights on trauma-specific, temporal immune dysregulation, with tremendous potential to serve as unique biomarkers and therapeutic targets for timely and precise intervention.

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2162
Author(s):  
Mohammad Taheri ◽  
Hamed Shoorei ◽  
Marcel E. Dinger ◽  
Soudeh Ghafouri-Fard

Estrogen receptors (ERs) comprise several nuclear and membrane-bound receptors with different tissue-specific functions. ERα and ERβ are two nuclear members of this family, whereas G protein-coupled estrogen receptor (GPER), ER-X, and Gq-coupled membrane estrogen receptor (Gq-mER) are membrane-bound G protein-coupled proteins. ERα participates in the development and function of several body organs such as the reproductive system, brain, heart and musculoskeletal systems. ERβ has a highly tissue-specific expression pattern, particularly in the female reproductive system, and exerts tumor-suppressive roles in some tissues. Recent studies have revealed functional links between both nuclear and membrane-bound ERs and non-coding RNAs. Several oncogenic lncRNAs and miRNAs have been shown to exert their effects through the modulation of the expression of ERs. Moreover, treatment with estradiol has been shown to alter the malignant behavior of cancer cells through functional axes composed of non-coding RNAs and ERs. The interaction between ERs and non-coding RNAs has functional relevance in several human pathologies associated with estrogen regulation, such as cancers, intervertebral disc degeneration, coronary heart disease and diabetes. In the current review, we summarize scientific literature on the role of miRNAs and lncRNAs on ER-associated signaling and related disorders.


Author(s):  
zhihong wang

Dear editor, we read with great interest the well written article by Dr Kerget et al with the main objective of investigating the role of TREM-1/TREM-2 ratio on patients with COVID-19 pneumonia. The article pointed that TREM-1 and TREM-2 have important role in inflammation and TREM-1/TREM-2 ratio was higher in severe COVID-19 patients compared with moderate COVID-19 patients. We have certain comments to understand the conclusions of this article. Firstly, triggering receptor expressed on myeloid cells-1 (TREM-1) is mainly express on neutrophils and monocytes in a cell membrane-bound form. A soluble form of TREM-1(sTREM-1), which lacks the cytoplasmic tail and transmembrane part, were detected in the blood in recent studies. Since you have mentioned “serum TREM-1”, we were confused whether you detected TREM-1 or sTREM-1. Secondly, we wanted to know more about the treatment and the kidney functions of the patients. Thirdly, We are curious to see if high TREM-1/TREM-2 ratio could predict the distribution of ILD. We would be glad to hear the opinion of the author on the points, to get a more convincing conclusion.


Author(s):  
Steven M. Doettl

It has been widely accepted that the assessment of balance after concussion plays a large role in determining deficit. Qualitative balance assessments have been an established piece of the post-injury assessment as a clinical behavioral marker of concussion for many years. Recently more specific guidelines outlining the role of balance evaluation in concussion identification and management have been developed as part of concussion management tools. As part of the ongoing development of concussions protocols, quantitative assessment of balance function following concussion has also been identified to have an important role. Frequently imbalance and dizziness reported following concussion is assumed to be associated with post-concussion syndrome (PCS). While imbalance and dizziness are common complaints in PCS, they can also be a sign of additional underlying pathology. In cases of specific dizziness symptoms or limited balance recovery beyond the initial post-concussive period, a quantitative vestibular assessment may also be needed. Electronystagmography and videonystagmography (ENG/VNG), rotary chair testing (RCT), and vestibular evoked myogenic potentials (VEMPs) have all been identified as valid assessment tools for vestibular dysfunction following traumatic brain injury (TBI). The assessment of balance and dizziness following sports-related concussions is an integral piece of the puzzle for removal from play, assessment of severity, and management.


2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.


2020 ◽  
Vol 20 (10) ◽  
pp. 1597-1610 ◽  
Author(s):  
Taru Aggarwal ◽  
Ridhima Wadhwa ◽  
Riya Gupta ◽  
Keshav Raj Paudel ◽  
Trudi Collet ◽  
...  

Regardless of advances in detection and treatment, breast cancer affects about 1.5 million women all over the world. Since the last decade, genome-wide association studies (GWAS) have been extensively conducted for breast cancer to define the role of miRNA as a tool for diagnosis, prognosis and therapeutics. MicroRNAs are small, non-coding RNAs that are associated with the regulation of key cellular processes such as cell multiplication, differentiation, and death. They cause a disturbance in the cell physiology by interfering directly with the translation and stability of a targeted gene transcript. MicroRNAs (miRNAs) constitute a large family of non-coding RNAs, which regulate target gene expression and protein levels that affect several human diseases and are suggested as the novel markers or therapeutic targets, including breast cancer. MicroRNA (miRNA) alterations are not only associated with metastasis, tumor genesis but also used as biomarkers for breast cancer diagnosis or prognosis. These are explained in detail in the following review. This review will also provide an impetus to study the role of microRNAs in breast cancer.


2021 ◽  
Vol 218 ◽  
pp. 153327
Author(s):  
Kaveh Ebahimzadeh ◽  
Hamed Shoorei ◽  
Seyed Ali Mousavinejad ◽  
Farhad Tondro Anamag ◽  
Marcel E. Dinger ◽  
...  
Keyword(s):  

2021 ◽  
Vol 892 ◽  
pp. 173809
Author(s):  
Soudeh Ghafouri-Fard ◽  
Mohammad Taheri

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunzhen Cheng ◽  
Fan Liu ◽  
Na Tian ◽  
Raphael Anue Mensah ◽  
Xueli Sun ◽  
...  

AbstractFusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.


2021 ◽  
Vol 896 ◽  
pp. 173914
Author(s):  
Omidvar Rezaei ◽  
Saeedeh Nateghinia ◽  
Mehrdad A. Estiar ◽  
Mohammad Taheri ◽  
Soudeh Ghafouri-Fard

Sign in / Sign up

Export Citation Format

Share Document