scholarly journals Strategies for Developing Functional Secretory Epithelia from Porcine Salivary Gland Explant Outgrowth Culture Models

Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 657 ◽  
Author(s):  
Urkasemsin ◽  
Castillo ◽  
Rungarunlert ◽  
Klincumhom ◽  
Ferreira

Research efforts have been made to develop human salivary gland (SG) secretory epithelia for transplantation in patients with SG hypofunction and dry mouth (xerostomia). However, the limited availability of human biopsies hinders the generation of sufficient cell numbers for epithelia formation and regeneration. Porcine SG have several similarities to their human counterparts, hence could replace human cells in SG modelling studies in vitro. Our study aims to establish porcine SG explant outgrowth models to generate functional secretory epithelia for regeneration purposes to rescue hyposalivation. Cells were isolated and expanded from porcine submandibular and parotid gland explants. Flow cytometry, immunocytochemistry, and gene arrays were performed to assess proliferation, standard mesenchymal stem cell, and putative SG epithelial stem/progenitor cell markers. Epithelial differentiation was induced and different SG-specific markers investigated. Functional assays upon neurostimulation determined α-amylase activity, trans-epithelial electrical resistance, and calcium influx. Primary cells exhibited SG epithelial progenitors and proliferation markers. After differentiation, SG markers were abundantly expressed resembling epithelial lineages (E-cadherin, Krt5, Krt14), and myoepithelial (α-smooth muscle actin) and neuronal (β3-tubulin, Chrm3) compartments. Differentiated cells from submandibular gland explant models displayed significantly greater proliferation, number of epithelial progenitors, amylase activity, and epithelial barrier function when compared to parotid gland models. Intracellular calcium was mobilized upon cholinergic and adrenergic neurostimulation. In summary, this study highlights new strategies to develop secretory epithelia from porcine SG explants, suitable for future proof-of-concept SG regeneration studies, as well as for testing novel muscarinic agonists and other biomolecules for dry mouth.

Development ◽  
1972 ◽  
Vol 27 (3) ◽  
pp. 497-513
Author(s):  
Kirstie A. Lawson

The ability of foetal rat salivary epithelium, particularly from the parotid gland, to develop morphogenetically and functionally (amylase activity) in various mesenchymes, and the quantitative effects of altering mesenchymal mass on the development of the parotid epithelium, have been studied in vitro. Both parotid and submandibular epithelial rudiments were able to undergo morphogenesis and subsequent cytodifferentiation in their own and in the reciprocal mesenchyme. The growth of the explant and the arrangement of the acini were governed by the mesenchyme, submandibular mesenchyme supporting the development of more acini, which were more closely packed, than parotid mesenchyme. The functional product of the epithelium was not qualitatively affected, amylase activity being developed only by parotid epithelium, whether in its own or in submandibular mesenchyme. Amylase activity was greater when the epithelium from a single parotid rudiment was recombined with submandibular mesenchyme than with its own mesenchyme. Increasing the initial mass of either salivary mesenchyme also led to the development of more amylase activity. Parotid epithelium was able to develop in lung mesenchyme, but not so well as in its own mesenchyme. Stomach and pancreatic mesenchyme could support only limited histogenesis of parotid epithelium. The results are interpreted in terms of morphogenetic and growth control of salivary epithelium by mesenchyme, the subsequent cytodifferentiation of the terminal buds being typical of the organ from which the epithelium was derived.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1945
Author(s):  
Sheyla González ◽  
Maximilian Halabi ◽  
David Ju ◽  
Matthew Tsai ◽  
Sophie X. Deng

The Notch signaling pathway plays a key role in proliferation and differentiation. We investigated the effect of Jagged 1 (Jag1)-mediated Notch signaling activation in the human limbal stem/progenitor cell (LSC) population and the stratification of the limbal epithelium in vitro. After Notch signaling activation, there was a reduction in the amount of the stem/progenitor cell population, epithelial stratification, and expression of proliferation markers. There was also an increase of the corneal epithelial differentiation. In the presence of Jag1, asymmetric divisions were decreased, and the expression pattern of the polarity protein Par3, normally present at the apical-lateral membrane of basal cells, was dispersed in the cells. We propose a mechanism in which Notch activation by Jag1 decreases p63 expression at the basal layer, which in turn reduces stratification by decreasing the number of asymmetric divisions and increases differentiation.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S25-S26
Author(s):  
Jingjing Ma ◽  
Emma Wu ◽  
Ye Li ◽  
William Seibel ◽  
Le Shen ◽  
...  

Abstract Compromised epithelial barrier function is known to be associated with inflammatory bowel disease (IBD) and may contribute to disease development. One mechanism of barrier dysfunction is increased expression of paracellular tight junction ion and water channels formed by claudins. Claudin-2 and -15 are two such channels. We hypothesize that blocking these channels could be a viable therapeutic approach to treat diarrhea. In an effort to develop blockers of these channels, we turn to our previously developed and validated in silico models of claudin-15 (Samanta et al. 2018). We reasoned that compounds that can bind with the interior of claudin pores can limit paracellular water and ion flux. Thus, we used docking algorithms to search for putative small molecules that bind in the claudin-15 pore. AutoDock Vina was initially used to assess rigid docking using small compound databases. The small molecules were analyzed based on binding affinity to the pore and visualized using VMD for their potential blockage of the channel. Clusters of binding modes were identified based on the prominent interacting residues of the protein with the small molecules. We initially screened 10,500 compounds from within the UIC Centre for Drug Discovery and a cross-section of 10,000 compounds from the NCI open compound repository. This initial screen allowed us to identify 2 first-in-class selective claudin-15 blockers with efficacy in MDCK monolayers induced to express claudin-15 and in wildtype duodenum. Next, we screened the entire NCI open compound repository for additional molecules structurally related to our best initially identified molecule and this has allowed us to identify 13 additional molecules that increase TER of claudin-15 expressing MDCK monolayers by 90–160%. Additionally, these molecules possess similar structural components that will be collected in a fragment library and explored through molecular dynamics simulations. We also developed a claudin-2 homology model on which we are performing docking studies and in vitro measurements, which we expect will result in similar candidate ligands for blocking claudin-2. Our study will provide important insight into the role of claudin-dependent cation permeability in fundamental physiology, which we believe will lead to the utility of claudin blockers as a novel and much needed approach to treat diseases such as IBD.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 916
Author(s):  
Yingquan Liang ◽  
Guilan Chen ◽  
Feng Zhang ◽  
Xiaoxiao Yang ◽  
Yuanli Chen ◽  
...  

Vascular calcification is strongly associated with atherosclerotic plaque burden and plaque instability. The activation of extracellular signal-regulated kinase 1/2 (ERK1/2) increases runt related transcription factor 2 (RUNX2) expression to promote vascular calcification. Procyanidin B2 (PB2), a potent antioxidant, can inhibit ERK1/2 activation in human aortic smooth muscle cells (HASMCs). However, the effects and involved mechanisms of PB2 on atherosclerotic calcification remain unknown. In current study, we fed apoE-deficient (apoE−/−) mice a high-fat diet (HFD) while treating the animals with PB2 for 18 weeks. At the end of the study, we collected blood and aorta samples to determine atherosclerosis and vascular calcification. We found PB2 treatment decreased lesions in en face aorta, thoracic, and abdominal aortas by 21.4, 24.6, and 33.5%, respectively, and reduced sinus lesions in the aortic root by 17.1%. PB2 also increased α-smooth muscle actin expression and collagen content in lesion areas. In the aortic root, PB2 reduced atherosclerotic calcification areas by 75.8%. In vitro, PB2 inhibited inorganic phosphate-induced osteogenesis in HASMCs and aortic rings. Mechanistically, the expression of bone morphogenetic protein 2 and RUNX2 were markedly downregulated by PB2 treatment. Additionally, PB2 inhibited ERK1/2 phosphorylation in the aortic root plaques of apoE−/− mice and calcified HASMCs. Reciprocally, the activation of ERK1/2 phosphorylation by C2-MEK1-mut or epidermal growth factor can partially restore the PB2-inhibited RUNX2 expression or HASMC calcification. In conclusion, our study demonstrates that PB2 inhibits vascular calcification through the inactivation of the ERK1/2-RUNX2 pathway. Our study also suggests that PB2 can be a potential option for vascular calcification treatment.


Author(s):  
Costantino Ricci ◽  
Federico Chiarucci ◽  
Francesca Ambrosi ◽  
Tiziana Balbi ◽  
Barbara Corti ◽  
...  

AbstractThe presence of melanin pigment and melanocytic markers expression have been rarely reported in salivary gland tumors. Herein, two cases of carcinoma arising in pleomorphic adenoma of the parotid gland and showing diffuse expression of myoepithelial and melanocytic markers are described. The clinical-pathological clues useful in the differential diagnosis with melanoma are discussed. In addition, a review of the pertinent literature is also proposed, discussing the pathologic mechanisms potentially involved in this phenomenon.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sara L. Schaefer ◽  
Amy L. Strong ◽  
Sheena Bahroloomi ◽  
Jichang Han ◽  
Michella K. Whisman ◽  
...  

Abstract Background Lipoleiomyoma is a rare, benign variant of the commonplace uterine leiomyoma. Unlike leiomyoma, these tumors are composed of smooth muscle cells admixed with mature adipose tissue. While rare, they are most frequently identified in the uterus, but even more infrequently have been described in extrauterine locations. Case presentation We describe a case report of a 45-year-old woman with a history of in vitro fertilization pregnancy presenting 6 years later with abdominal distention and weight loss found to have a 30-cm intra-abdominal lipoleiomyoma. While cross-sectional imaging can narrow the differential diagnosis, histopathological analysis with stains positive for smooth muscle actin, desmin, and estrogen receptor, but negative for HMB-45 confirms the diagnosis of lipoleiomyoma. The large encapsulated tumor was resected en bloc. The patients post-operative course was uneventful and her symptoms resolved. Conclusions Lipoleiomyoma should be considered on the differential diagnosis in a woman with a large intra-abdominal mass. While considered benign, resection should be considered if the mass is symptomatic, and the diagnosis is unclear or there is a concern for malignancy.


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nozomi Igarashi ◽  
Megumi Honjo ◽  
Makoto Aihara

AbstractWe examined the effects of mTOR inhibitors on the fibrotic response induced by transforming growth factor-beta2 (TGF-β2) in cultured human trabecular meshwork (hTM) cells. TGF-β2-induced expression of fibronectin, collagen type I, alpha 1 chain (COL1A1), and alpha-smooth muscle actin (αSMA) in hTM cells was examined in the presence or absence of mTOR inhibitors using quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. The migration rates of hTM cells were examined in the presence of TGF-β2 with or without mTOR inhibitors. An in vitro study showed that the expression of fibronectin, COL1A1, and αSMA was upregulated by TGF-β2 treatment of hTM cells; such upregulation was significantly suppressed by mTOR inhibitors. The inhibitors significantly reduced the migration rate of TGF-β2-stimulated hTM cells. mTOR inhibitors may usefully reduce the fibrotic response of hTM cells and we may have to explore if it is also effective in in vivo model.


Sign in / Sign up

Export Citation Format

Share Document