scholarly journals Rapamycin Suppresses Penile NADPH Oxidase Activity to Preserve Erectile Function in Mice Fed a Western Diet

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Justin D. La Favor ◽  
Clifford J. Pierre ◽  
Trinity J. Bivalacqua ◽  
Arthur L. Burnett

The mechanistic target of rapamycin (mTOR) is a nutrient-sensitive cellular signaling kinase that has been implicated in the excess production of reactive oxygen species (ROS). NADPH oxidase-derived ROS have been implicated in erectile dysfunction pathogenesis. The objective of this study was to determine if mTOR is an activator of NADPH oxidase in the penis and to determine the functional relevance of this pathway in a translationally relevant model of diet-induced erectile dysfunction. Male mice were fed a control diet or a high-fat, high-sucrose Western style diet (WD) for 12 weeks and treated with vehicle or rapamycin for the final 4 weeks of the dietary intervention. Following the intervention, erectile function was assessed by cavernous nerve-stimulated intracavernous pressure measurement, in vivo ROS production was measured in the penis using a microdialysis approach, and relative protein contents from the corpus cavernosum were determined by Western blot. Erectile function was impaired in vehicle treated WD-mice and was preserved in rapamycin treated WD-mice. Penile NADPH oxidase-mediated ROS were elevated in WD-mice and suppressed by rapamycin treatment. Western blot analysis suggests mTOR activation with WD by increased active site phosphorylation of mTOR and p70S6K, and increased expression of NADPH oxidase subunits, all of which were suppressed by rapamycin. These data suggest that mTOR is an upstream mediator of NADPH oxidase in the corpus cavernosum in response to a chronic Western diet, which has an adverse effect on erectile function.

2013 ◽  
Vol 305 (4) ◽  
pp. R423-R434 ◽  
Author(s):  
Justin D. La Favor ◽  
Ethan J. Anderson ◽  
Jillian T. Dawkins ◽  
Robert C. Hickner ◽  
Christopher J. Wingard

The aim of this study was to investigate aerobic exercise training as a means to prevent erectile dysfunction (ED) and coronary artery disease (CAD) development associated with inactivity and diet-induced obesity. Male Sprague-Dawley rats were fed a Western diet (WD) or a control diet (CD) for 12 wk. Subgroups within each diet remained sedentary (Sed) or participated in aerobic interval treadmill running throughout the dietary intervention. Erectile function was evaluated under anesthesia by measuring the mean arterial pressure and intracavernosal pressure in response to electrical field stimulation of the cavernosal nerve, in the absence or presence of either apocynin, an NADPH oxidase inhibitor, or sepiapterin, a tetrahydrobiopterin precursor. Coronary artery endothelial function (CAEF) was evaluated ex vivo with cumulative doses of ACh applied to preconstricted segments of the left anterior descending coronary artery. CAEF was assessed in the absence or presence of apocynin or sepiapterin. Erectile function ( P < 0.0001) and CAEF ( P < 0.001) were attenuated in WD-Sed. Exercise preserved erectile function ( P < 0.0001) and CAEF ( P < 0.05) within the WD. Erectile function ( P < 0.01) and CAEF ( P < 0.05) were augmented by apocynin only in WD-Sed, while sepiapterin ( P < 0.05) only augmented erectile function in WD-Sed. These data demonstrate that a chronic WD induces impairment in erectile function and CAEF that are commonly partially reversible by apocynin, whereas sepiapterin treatment exerted differential functional effects between the two vascular beds. Furthermore, exercise training may be a practical means of preventing diet-induced ED and CAD development.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1376-1376
Author(s):  
Fábio Henrique Silva ◽  
Mário Angelo Claudino ◽  
Carla Fernanda Franco-Penteado ◽  
Edson Antunes ◽  
Fernando Ferreira Costa

Abstract Introduction: Erectile function alterations result from an imbalance of nitric oxide (NO)-mediated relaxations and sympathetic-mediated vasoconstriction in the erectile tissue. The degree of contraction of corpus cavernosum (CC) smooth muscle determines the functional state of penile flaccidity, tumescence, erection, or detumescence. Patients with sickle-cell disease (SCD) display alterations in erectile function. Priapism is most frequently reported and untreated acute ischaemic priapism results in erectile dysfunction (ED). Previous studies have shown that patients with ED exhibit priapic activity, however, ED unassociated with priapism is still poorly investigated. Transgenic sickle cell mice have been employed to better understand the complex pathophysiology of SCD. The Berkeley murine model displays features of priapism and is associated with an upregulation of the NO-cGMP signaling pathway in the cavernosal tissue, reflecting in an uncontrolled erectile response. Townes mice express human sickle hemoglobin and exhibit the major features found in humans with SCD. However, no detailed study has investigated the pathophysiological alterations of corpus cavernosum (CC) in Townes SCD mice. Thus, the aim of this study was to characterize the erectile function in these animals, focusing on the role of the NO signaling pathway and contractile machinery. Methods: Townes transgenic sickle cell mice and C57BL/6 mice (control) aged 3 to 4 months-old were used (Wu et al Blood 2006). The intracavernous pressure (ICP) was assessed following electrical stimulation of cavernous nerve in anaesthetized mice. In separate protocols, strips of CC were mounted in isolated organ baths, and the relaxing responses to acetylcholine (ACh; endothelium-dependent responses) and sodium nitroprusside (SNP; endothelium-independent responses), as well as electrical-field stimulation (EFS; nitrergic relaxations) were obtained in cavernosal strips precontracted with the α1-adrenergic receptor agonist phenylephrine (3-10 µM). Contracting responses to phenylephrine and EFS were also obtained in both control and SCD mice. Results: The cavernous nervous stimulation caused frequency-dependent increases of ICP in control and SCD groups. However, ICP was 37% lower in SCD mice compared to the control group (P < 0.05). Phenylephrine (0.01 – 100 µM) induced concentration-dependent CC contractions in both control and SCD mice, but maximal contractile responses were significantly greater (P < 0.05) in SCD compared to control mice (1.32 ± 0.11 and 0.80 ± 0.04 mN, respectively). Likewise, EFS-induced neurogenic CC contractions in SCD mice were 50% higher (P < 0.05) compared to the control. The cumulative addition of ACh (0.001 – 10 µM) produced concentration-dependent CC relaxations in both groups, but maximal relaxations were significantly higher in SCD (78 ± 6%; P < 0.05) compared to control mice (50 ± 4%). Similarly, SNP (0.01 – 10 µM) produced concentration-dependent CC relaxations, but, again, the maximal relaxations elicited by this agent were significantly higher in SCD (96 ± 3; P < 0.05) compared to control mice (77 ± 5 %; n=9). The nitrergic relaxations induced by EFS were also significantly higher (P < 0.001) in SCD mice compared to control mice (8 Hz: 90 ± 6 and 65 ± 4 %, respectively; n=5). Conclusion: Our study shows that this type of SCD mouse exhibits enhanced α1-adrenoceptor-mediated vasoconstriction and erectile dysfunction. Interestingly, however, NO-mediated CC relaxations are greater in the SCD mice. It is likely, therefore, that CC vasoconstriction in SCD overcomes the NO-dependent erectile stimulus, making penile tumescence more difficult to occur. These results are in contrast with the data from the Berkeley SCD mice, which indicate exaggerated in vivo erectile responses. The reason to this difference among the two SCD models is not clear. Taken together our results indicate that ED, unassociated with priapism, as seen in the Townes mouse, should be investigated in SCD patients. Financial Support: FAPESP/CNPq. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Hongzhen Li ◽  
Chunyan Peng ◽  
Chenhui Zhu ◽  
Shuang Nie ◽  
Xuetian Qian ◽  
...  

Abstract Background Hypoxia is a characteristic of the tumor microenvironments within pancreatic cancer (PC), which has been linked to its malignancy. Recently, hypoxia has been reported to regulate the activity of important carcinogenic pathways by changing the status of histone modification. NOX4, a member of NADPH oxidase (NOX), has been found to be activated by hypoxia and promote cancer progression in several cancers. But whether it is involved in the epigenetic changes of tumor cells induced by hypoxia is still unclear, and its biological roles in PC also need to be explored. Methods A hypoxic-related gene signature and its associated pathways in PC were identified by analyzing the pancreatic cancer gene expression data from GEO and TCGA database. Candidate downstream gene (NOX4), responding to hypoxia, was validated by RT-PCR and western blot. Then, we evaluated the relationship between NOX4 expression and clinicopathologic parameters in 56 PC patients from our center. In vitro and in vivo assays were preformed to explore the phenotype of NOX4 in PC. Immunofluorescence, western blot and chromatin immunoprecipitation assays were further applied to search for a detailed mechanism. Results We quantified hypoxia and developed a hypoxia signature, which was associated with worse prognosis and elevated malignant potential in PC. Furthermore, we found that NADPH oxidase 4 (NOX4), which was induced by hypoxia and upregulated in PC in a HIF1A-independent manner, caused inactivation of lysine demethylase 5A (KDM5A), increased the methylation modification of histone H3 and regulated the transcription of EMT-associated gene_ snail family transcriptional repressor 1 (SNAIL1). This served to promote the invasion and metastasis of PC. NOX4 deficiency repressed hypoxia-induced EMT, reduced expression of H3K4ME3 and impaired the invasion and metastasis of PC cells; however, knockdown of KDM5A reversed the poor expression of H3KEME3 induced by NOX4 deficiency, thereby promoting EMT. Conclusions This study highlights the prognostic role of hypoxia-related genes in PC and strong correlation with EMT pathway. Our results also creatively discovered that NOX4 was an essential mediator for hypoxia-induced histone methylation modification and EMT in PC cells.


Author(s):  
Didem Yilmaz-Oral ◽  
Ecem Kaya-Sezginer ◽  
Dilan Askin ◽  
Yesim Hamurtekin ◽  
Serap Gur

Abstract Aim To investigate the possible beneficial effect of mirabegron [a selective β3-adrenoceptor (AR) agonist] treatment on erectile dysfunction (ED) in streptozotocin-induced diabetic rats. Methods Sprague-Dawley rats (n=20) were divided into two groups: control group and streptozotocin-induced diabetic group. In vivo erectile responses were evaluated after intracavernosal injection of mirabegron (0.4 mg/kg) in rats. The relaxation responses to electrical field stimulation (EFS, 10 Hz), sodium nitroprusside (SNP, 10 nM) and sildenafil (1 μM) of corpus cavernosum (CC) strips were examined after the incubation with mirabegron (10 μM). β3-ARs expression and localization were determined by Western blot and immunohistochemical analyses in CC tissue. Results In vivo erectile responses of diabetic rats [intracavernasal pressure (ICP) / mean arterial pressure, 0.17±0.01] were decreased, which were restored after administration of mirabegron (0.75±0.01, P<0.001). The basal ICP (7.1±0.6 mmHg) in diabetic rats was markedly increased after mirabegron (36.1 ±5.4 mmHg, P<0.01). Mirabegron caused markedly relaxation in diabetic rat CC after phenylephrine precontraction. The relaxation responses to EFS and sildenafil were reduced in diabetic CC, which were increased in the presence of mirabegron. Mirabegron enhanced SNP-induced relaxation response in both groups. The expression and immunoreactivity of β3-ARs localized to CC smooth muscle were observed in control and diabetic rats. Conclusions This is the first study to show that intracavernosal administration of mirabegron improved erectile function and neurogenic relaxation of CC in diabetic rats. These results may be supported by further studies using combinations of mirabegron and phosphodiesterase type 5 (PDE5) inhibitors for the treatment of diabetic ED, especially in patients who do not respond to PDE5 inhibitor therapy.


2008 ◽  
Vol 294 (5) ◽  
pp. H2204-H2211 ◽  
Author(s):  
Ian P. Luttrell ◽  
Mei Swee ◽  
Barry Starcher ◽  
William C. Parks ◽  
Kanchan Chitaley

The number of men with type II diabetes-associated erectile dysfunction (ED) continues to grow rapidly; however, the majority of basic science studies has examined mechanisms of ED in animal models of type I diabetes. In this study, we first establish an in vivo mouse model of type II diabetic ED using the leptin receptor mutated db/ db and wild-type control BKS mouse. Furthermore, we hypothesized that dual mechanistic impairments contribute to the impaired erectile function in the type II diabetic mouse, altered vasoreactivity, and venoocclusive disorder. In vivo erectile function was measured as intracavernosal pressure (ICP) normalized to mean arterial pressure (MAP) following electrical stimulation of the cavernosal nerve. Venoocclusion was assessed by the maintenance of elevated in vivo ICP following intracorporal saline infusion. Vasoreactivity of isolated cavernosum in response to contractile and dilatory stimulation was examined in vitro by myography. Collagen and elastin content were evaluated by quantification of hydroxyproline and desmosine, respectively, as well as by quantitative PCR and histological analysis of isolated cavernosum. Erectile function was significantly decreased in db/ db vs. BKS mice in a manner consistent with impairments in venoocclusive ability and decreased inflow. Heightened vasoconstriction and attenuated dilation in cavernosum of db/ db vs. BKS mice suggest an overall lowered relaxation ability and thus impaired filling of the cavernosal spaces. A decrease in desmosine and hydroxyproline as well as lowered mRNA levels for tropoelastin, fibrillin-1, and α1(I) collagen were detected. These vasoreactive and sinusoidal matrix alterations may alter tissue compliance dispensability, preventing the normal expansion necessary for erection.


2016 ◽  
Vol 44 (02) ◽  
pp. 305-320 ◽  
Author(s):  
Xiang Li ◽  
Yun Jung Lee ◽  
Hye Yoom Kim ◽  
Rui Tan ◽  
Min Cheol Park ◽  
...  

We have reported that ethanol extracts of the root from Scutellaria baicalensis Georgi (ESB) relax cavernous smooth muscles via the NO/cGMP system and Ca[Formula: see text]-sensitive K[Formula: see text] channels in the rabbit corpus cavernosum. In the present study, erectile function was assessed by intracavernous pressure (ICP) and mean arterial pressure (MAP) during electrical stimulation of the cavernous nerve. The ICP/MAP ratio was dose-dependently increased by the treatment of ESB in normal SD rats ([Formula: see text]). To investigate the beneficial effect of ESB on erectile dysfunction in a diabetic animal model, male SD rats were injected with streptozotocin (60[Formula: see text]mg/kg) and then 300[Formula: see text]mg/kg/day ESB was administered daily for eight weeks. In our in vivo study, administration of ESB in STZ rats significantly increased the ICP, ICP/MAP ratio, area under the curve (AUC), as well as the cavernous cGMP levels. Morphometric analyses showed that ESB administration increased both smooth muscle volume and the regular arrangement of collagen fibers compared to the STZ group. The protein expression levels of endothelial nitric oxide synthase (eNOS) and SM [Formula: see text]-actin from penile tissues were also significantly increased in the ESB-treated rats. Taken together, these results suggest that ESB ameliorates penile erectile dysfunction via the activation of the NO/cGMP pathways of the penile corpus cavernosum in a streptozotocin-induced diabetic rat model.


2018 ◽  
Vol 19 (12) ◽  
pp. 3730 ◽  
Author(s):  
Seung Jeon ◽  
Guan Zhu ◽  
Woong Bae ◽  
Sae Choi ◽  
Hyun Jeong ◽  
...  

Effective therapies for erectile dysfunction (ED) associated with diabetes mellitus (DM) are needed. In this study, the effects of stromal cell-derived factor-1 (SDF-1)-expressing engineered mesenchymal stem cells (SDF-1 eMSCs) and the relevant mechanisms in the corpus cavernosum of a streptozotocin (STZ)-induced DM ED rat model were evaluated. In a randomized controlled trial, Sprague–Dawley (SD) rats (n = 48) were divided into four groups (n = 12/group): Normal (control), DM ED (diabetes induced by STZ), DM ED + BM-MSC (treated with bone marrow [BM]-derived MSCs), and DM ED + SDF-1 eMSC (treated with SDF-1-expressing BM-MSCs). After four weeks, intracavernosal pressure (ICP), an indicator of erectile function, was 0.75 ± 0.07 in the normal group, 0.27 ± 0.08 in the DM ED group, 0.42 ± 0.11 in the DM ED + BM-MSC group, and 0.58 ± 0.11 in the DM ED + SDF-1 eMSC group. BM-MSCs, especially SDF-1 eMSCs, improved ED (p < 0.05). SDF-1 eMSC treatment improved the smooth muscle content in the corpus cavernosum (p < 0.05). As SDF-1 expression increased, ED recovery improved. In the SDF-1 eMSC group, levels of neuronal nitric oxide synthase (nNOS) and phosphorylated endothelial NOS (p-eNOS) were higher than those in other groups (p < 0.05). In addition, high stromal cell-derived factor-1 (SDF-1) expression was associated with increased vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in DM ED rats (p < 0.05). Higher levels of phosphorylated protein kinase B (p-AKT)/protein kinase B (AKT) (p < 0.05) and B-cell lymphoma-2 (Bcl-2) and lower levels of the apoptosis factors Bcl2-associated x (Bax) and caspase-3 were observed in the MSC-treated group than in the DM ED group (p < 0.05). SDF-1 eMSCs showed beneficial effects on recovery from erectile function.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Danielle F. Vileigas ◽  
Victoria M. Harman ◽  
Paula P. Freire ◽  
Cecília L. C. Marciano ◽  
Paula G. Sant’Ana ◽  
...  

AbstractObesity is a pandemic associated with a high incidence of cardiovascular disease; however, the mechanisms are not fully elucidated. Proteomics may provide a more in-depth understanding of the pathophysiological mechanisms and contribute to the identification of potential therapeutic targets. Thus, our study evaluated myocardial protein expression in healthy and obese rats, employing two proteomic approaches. Male Wistar rats were established in two groups (n = 13/group): control diet and Western diet fed for 41 weeks. Obesity was determined by the adipose index, and cardiac function was evaluated in vivo by echocardiogram and in vitro by isolated papillary muscle analysis. Proteomics was based on two-dimensional gel electrophoresis (2-DE) along with mass spectrometry identification, and shotgun proteomics with label-free quantification. The Western diet was efficient in triggering obesity and impaired contractile function in vitro; however, no cardiac dysfunction was observed in vivo. The combination of two proteomic approaches was able to increase the cardiac proteomic map and to identify 82 differentially expressed proteins involved in different biological processes, mainly metabolism. Furthermore, the data also indicated a cardiac alteration in fatty acids transport, antioxidant defence, cytoskeleton, and proteasome complex, which have not previously been associated with obesity. Thus, we define a robust alteration in the myocardial proteome of diet-induced obese rats, even before functional impairment could be detected in vivo by echocardiogram.


Sign in / Sign up

Export Citation Format

Share Document