scholarly journals Hypoxia promotes the metastasis of pancreatic cancer through regulating NOX4/KDM5A-mediated histone methylation modification changes in a HIF1A-independent manner

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Hongzhen Li ◽  
Chunyan Peng ◽  
Chenhui Zhu ◽  
Shuang Nie ◽  
Xuetian Qian ◽  
...  

Abstract Background Hypoxia is a characteristic of the tumor microenvironments within pancreatic cancer (PC), which has been linked to its malignancy. Recently, hypoxia has been reported to regulate the activity of important carcinogenic pathways by changing the status of histone modification. NOX4, a member of NADPH oxidase (NOX), has been found to be activated by hypoxia and promote cancer progression in several cancers. But whether it is involved in the epigenetic changes of tumor cells induced by hypoxia is still unclear, and its biological roles in PC also need to be explored. Methods A hypoxic-related gene signature and its associated pathways in PC were identified by analyzing the pancreatic cancer gene expression data from GEO and TCGA database. Candidate downstream gene (NOX4), responding to hypoxia, was validated by RT-PCR and western blot. Then, we evaluated the relationship between NOX4 expression and clinicopathologic parameters in 56 PC patients from our center. In vitro and in vivo assays were preformed to explore the phenotype of NOX4 in PC. Immunofluorescence, western blot and chromatin immunoprecipitation assays were further applied to search for a detailed mechanism. Results We quantified hypoxia and developed a hypoxia signature, which was associated with worse prognosis and elevated malignant potential in PC. Furthermore, we found that NADPH oxidase 4 (NOX4), which was induced by hypoxia and upregulated in PC in a HIF1A-independent manner, caused inactivation of lysine demethylase 5A (KDM5A), increased the methylation modification of histone H3 and regulated the transcription of EMT-associated gene_ snail family transcriptional repressor 1 (SNAIL1). This served to promote the invasion and metastasis of PC. NOX4 deficiency repressed hypoxia-induced EMT, reduced expression of H3K4ME3 and impaired the invasion and metastasis of PC cells; however, knockdown of KDM5A reversed the poor expression of H3KEME3 induced by NOX4 deficiency, thereby promoting EMT. Conclusions This study highlights the prognostic role of hypoxia-related genes in PC and strong correlation with EMT pathway. Our results also creatively discovered that NOX4 was an essential mediator for hypoxia-induced histone methylation modification and EMT in PC cells.

2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Runsang Pan ◽  
Zhiwei He ◽  
Hao Wu ◽  
...  

Abstract Background: Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC.Methods: After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation, migration and invasion under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC.Results: FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions.Conclusion: Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xingcheng Xiong ◽  
Jiarui Feng ◽  
Xiao Yang ◽  
Hanjun Li ◽  
Qiao Shi ◽  
...  

Abstract Background Pancreatic cancer (PC), characterized with high growth rate and metastatic rate. It’s urgently necessary to explore new mechanism of PC. Circular RNA/miRNA/mRNA network was widely reported to participate in the cancer progression. Methods In this research, circular RNA CDR1as (circCDR1as) was identified by microarray analysis and detected in pancreatic cancer (PC) tissues and cells. Transwell, colony-forming assay, nude mouse tumorigenicity assay were used to determine the function of circCDR1as in PC. Western blot, dual luciferase reporting test were applied to investigate the mechanism. Results We found that circCDR1as was highly expressed in PC tissues. The levels of circCDR1as in PC tissues and cells were higher than those in controls. CircCDR1as promoted the migration, invasion and proliferation of PC cells in vitro and tumor growth in vivo via mediating E2F3 expression by sponging miR-432-5p. Conclusions In conclusion, circCDR1as could promote the development of PC and might be a novel diagnostic target for PC.


2020 ◽  
Author(s):  
Hongzhen Li ◽  
Chunyan Peng ◽  
Chenhui Zhu ◽  
Shuang Nie ◽  
Xuetian Qian ◽  
...  

Abstract BackgroundHypoxia is a characteristic of the tumor microenvironments within Pancreatic cancer (PC) which has been linked to its malignancy. Oxidative stress, characterized by NADPH oxidase (NOX) activation, and epithelial-to-mesenchymal transition (EMT) could be induced by hypoxia which involved in tumor progression and metastasis. However, the relationship between hypoxia-induced oxidative stress and EMT has not been clarified, and the regulatory mechanism of NADPH oxidase is still unknown. MethodsA hypoxic-related gene signature and its associated pathways in PC were identified by bioinformatics method. Candidate downstream gene (NOX4), responding to hypoxia was validated by RT-PCR and western blot. In vitro and in vivo assays as well as tumor samples from our centre were preformed to explore the phenotype of NOX4 in PC. Immunofluorescence, western blot and chromatin immunoprecipitation assays were further applied to search for detailed mechanism. ResultsWe established a hypoxia-related gene signature within PC which was prognostic and linked with up-regulated EMT pathway. Then we found that hypoxia could induce stable up-regulation of NOX4, which is essential for EMT activation. Elevated expression of NOX4 was observed in PC samples and positively associated with advanced tumor grade and unfavorable prognosis. In vivo and in vitro experiments demonstrated NOX4 overexpress or inhibition in pancreatic cancer cells caused changes of proliferation and invasion ability. Then we found NOX4 could increase the methylation modification of histone H3 and regulated the transcription of EMT-associated gene_ snail family transcriptional repressor 1 (SNAIL1). ConclusionsThis study highlights the prognostic role of hypoxia-related genes in PC and strong correlation with EMT pathway. Our results also creatively discovered that NOX4 was an essential mediator for hypoxia-induced histone methylation modification and EMT in PC cells.


2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Runsang Pan ◽  
Zhiwei He ◽  
Hao Wu ◽  
...  

Abstract Background Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC. Methods After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation and migration under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC. Results FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions. Conclusion Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Runsang Pan ◽  
Zhiwei He ◽  
Hao Wu ◽  
...  

Abstract Background: Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC.Methods: After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation, migration and invasion under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC.Results: FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions.Conclusion: Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Zhiwei He ◽  
Runsang Pan ◽  
Hao Wu ◽  
...  

Abstract Background: Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC.Methods: After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation, migration and invasion under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC.Results: FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions.Conclusion: Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


Author(s):  
Jiewei Lin ◽  
Shuyu Zhai ◽  
Siyi Zou ◽  
Zhiwei Xu ◽  
Jun Zhang ◽  
...  

Abstract Background FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. Methods FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. Results FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. Conclusions Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.


Sign in / Sign up

Export Citation Format

Share Document