scholarly journals Identification and Evaluation of New Potential Inhibitors of Human Neuraminidase 1 Extracted from Olyra latifolia L.: A Preliminary Study

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 411
Author(s):  
Camille Albrecht ◽  
Zachée Louis Evariste Akissi ◽  
Philomène Akoua Yao-Kouassi ◽  
Abdulmagid Alabdul Magid ◽  
Pascal Maurice ◽  
...  

Sialidases, also called neuraminidases, are involved in several human pathologies such as neurodegenerative disorders, cancers, as well as infectious and cardiovascular diseases. Several studies have shown that neuraminidases, such as neuraminidase 1 (NEU-1), may be promising pharmacological targets. Therefore, the discovery of new selective inhibitors of NEU-1 are necessary to better understand the biological functions of this sialidase. In the present study, we describe the isolation and characterization of nine known compounds from Olyra latifolia L. leaves. This plant, known to have several therapeutic properties, belongs to the family of Poaceae and is found in the neotropics and in tropical Africa and Madagascar. Among the purified compounds, feddeiketone B, 2,3-dihydroxy-1-(4-hydroxy-3,5-diméthoxyphényl)-l-propanone, and syringylglycerol were shown to present structural analogy with DANA, and their effects on membrane NEU-1 sialidase activity were evaluated. Our results show that they possess inhibitory effects against NEU-1-mediated sialidase activity at the plasma membrane. In conclusion, we identified new natural bioactive molecules extracted from Olyra latifolia as inhibitors of human NEU-1 of strong interest to elucidate the biological functions of this sialidase and to target this protein involved in several pathophysiological contexts.

2020 ◽  
Vol 21 (9) ◽  
pp. 3160 ◽  
Author(s):  
Pilar Domingo-Calap ◽  
Beatriz Beamud ◽  
Lucas Mora-Quilis ◽  
Fernando González-Candelas ◽  
Rafael Sanjuán

The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is Klebsiella pneumoniae, whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new K. pneumoniae phages, πVLC5 and πVLC6, isolated from environmental samples. These phages belong to the genus Drulisvirus within the family Podoviridae. Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect K. pneumoniae capsular types K22 and K37. In addition, we found that phage πVLC6 also infects capsular type K13 and is capable of striping the capsules of K. pneumoniae KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage πVLC6 is conferred by a second, divergent depolymerase. Phage πVLC5 encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few Klebsiella capsular types. This constitutes an important challenge for clinical applications.


2019 ◽  
Vol 24 (2) ◽  
pp. 7-16
Author(s):  
Nabin Rana ◽  
Saraswoti Khadka ◽  
Bishnu Prasad Marasini ◽  
Bishnu Joshi ◽  
Pramod Poudel ◽  
...  

 Realizing myxobacteria as a potential source of antimicrobial metabolites, we pursued research to isolate myxobacteria showing antimicrobial properties. We have successfully isolated three strains (NR-1, NR-2, NR-3) using the Escherichia coli baiting technique. These isolates showed typical myxobacterial growth characteristics. Phylogenetic analysis showed that all the strains (NR-1, NR-2, NR-3) belong to the family Archangiaceae, suborder Cystobacterineae, and order Myxococcales. Furthermore, 16S rRNA gene sequence similarity searched through BLAST revealed that strain NR-1 showed the closest similarity (91.8 %) to the type strain Vitiosangium cumulatum (NR-156939), NR-2 showed (98.8 %) to the type of Cystobacter badius (NR-043940), and NR-3 showed the closest similarity (83.5 %) to the type of strain Cystobacter fuscus (KP-306730). All isolates showed better growth in 0.5-1 % NaCl and pH around 7.0, whereas no growth was observed at pH 9.0 and below 5.0. All strains showed better growth at 32° C and hydrolyzed starch, whereas casein was efficiently hydrolyzed by NR-1 and NR-2. Besides, preliminary antimicrobial tests from crude extracts showed activities against Gram-positive, Gram-negative bacteria, and fungi. Our findings suggest that the arcane soil habitats of Nepal harbor myxobacteria with the capability to produce diverse antimicrobial activities that may be explored to overcome the rapidly rising global concern about antibiotic resistance.


Parasitology ◽  
1996 ◽  
Vol 112 (3) ◽  
pp. 331-338 ◽  
Author(s):  
X. Q. Hong ◽  
J. Santiago Mejia ◽  
S. Kumar ◽  
F. B. Perler ◽  
C. K. S. Carlow

SUMMARYDirofilaria immitis is an important filarial parasite of dogs and cats, and a useful model for human filariasis. Current diagnostic tests for heartworm infection in animals rely on the presence of fecund female worms (usually found 6·5 months post-infection or later) and therefore fail to detect pre-patent infections. Putative pepsin inhibitors from 2 filarial parasites of humans namely Onchocerca volvulus (Ov33, Oc3.6, OvDSB) and Brugia malayi (Bm33), have been shown to be useful in diagnosis of onchocerciasis and lymphatic filariasis, respectively. Previous studies have suggested that a homologue exists in D. immitis (DiT33), which may have potential in diagnosis of heartworm infection. In this study, the isolation and characterization of a cDNA clone encoding DiT33 is described.‡ This cDNA contains 12 bases of the nematode-specific 22 nucleotide spliced leader sequence and encodes a 26·4 kDa-protein with a high level of similarity (87–89%) to other filarial members of the family. DJT33 was over-expressed in E. coli as a fusion with the maltose-binding protein and serological analysis was performed using a panel of clinically defined dog sera. The findings of this study indicate that DiT33 is a promising antigen for the early detection of D. immitis and may be a valuable tool in the control and management of heartworm infection.


2007 ◽  
Vol 7 (4) ◽  
pp. 701-704 ◽  
Author(s):  
MARTINA VYSKOČILOVÁ ◽  
MARKÉTA ONDRAČKOVÁ ◽  
ANDREA ŠIMKOVÁ ◽  
JEAN-FRANÇOIS MARTIN

2013 ◽  
Vol 59 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Chao Gong ◽  
Spencer Heringa ◽  
Randhir Singh ◽  
Jinkyung Kim ◽  
Xiuping Jiang

The objectives of this study were to isolate and characterize bacteriophages specific to hydrogen-sulfide-producing bacteria (SPB) from raw animal materials, and to develop a SPB-specific bacteriophage cocktail for rendering application. Meat, chicken offal, and feather samples collected from local supermarkets and rendering processing plants were used to isolate SPB (n = 142). Bacteriophages (n = 52) specific to SPB were isolated and purified from the above samples using 18 of those isolated SPB strains as hosts. The host ranges of bacteriophages against 5 selected SPB strains (Escherichia coli, Citrobacter freundii, and Hafnia alvei) were determined. Electron microscopy observation of 9 phages selected for the phage cocktail revealed that 6 phages belonged to the family of Siphoviridae and 3 belonged to the Myoviridae family. Restriction enzyme digestion analysis with endonuclease DraI detected 6 distinguished patterns among the 9 phages. Phage treatment prevented the growth of SPB for up to 10 h with multiplicity of infection ratios of 1, 10, 100, and 1000 in tryptic soy broth at 30 °C, and extended the lag phase of SPB growth for 2 h at 22 °C with multiplicities of infection of 10, 100, and 1000. These results suggest that the selected bacteriophage cocktail has a high potential for phage application to control SPB in raw animal materials destined for the rendering process.


2000 ◽  
Vol 74 (7) ◽  
pp. 3156-3165 ◽  
Author(s):  
Richard Molenkamp ◽  
Babette C. D. Rozier ◽  
Sophie Greve ◽  
Willy J. M. Spaan ◽  
Eric J. Snijder

ABSTRACT Equine arteritis virus (EAV), the type member of the family Arteriviridae, is a single-stranded RNA virus with a positive-stranded genome of approximately 13 kb. EAV uses a discontinuous transcription mechanism to produce a nested set of six subgenomic mRNAs from which its structural genes are expressed. We have generated the first documented arterivirus defective interfering (DI) RNAs by serial undiluted passaging of a wild-type EAV stock in BHK-21 cells. A cDNA copy of the smallest DI RNA (5.6 kb) was cloned. Upon transfection into EAV-infected BHK-21 cells, transcripts derived from this clone (pEDI) were replicated and packaged. Sequencing of pEDI revealed that the DI RNA was composed of three segments of the EAV genome (nucleotides 1 to 1057, 1388 to 1684, and 8530 to 12704) which were fused in frame with respect to the replicase reading frame. Remarkably, this DI RNA has retained all of the sequences encoding the structural proteins. By insertion of the chloramphenicol acetyltransferase reporter gene in the DI RNA genome, we were able to delimitate the sequences required for replication/DI-based transcription and packaging of EAV DI RNAs and to reduce the maximal size of a replication-competent EAV DI RNA to approximately 3 kb.


2015 ◽  
Vol 90 (1) ◽  
pp. 76-91 ◽  
Author(s):  
Nicole A. Doria-Rose ◽  
Jinal N. Bhiman ◽  
Ryan S. Roark ◽  
Chaim A. Schramm ◽  
Jason Gorman ◽  
...  

ABSTRACT The epitopes defined by HIV-1 broadly neutralizing antibodies (bNAbs) are valuable templates for vaccine design, and studies of the immunological development of these antibodies are providing insights for vaccination strategies. In addition, the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of 12 V1V2-directed neutralizing antibodies, CAP256-VRC26, isolated from an HIV-1 clade C-infected donor at years 1, 2, and 4 of infection (N. A. Doria-Rose et al., Nature 509:55–62, 2014, http://dx.doi.org/10.1038/nature13036 ). Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. Thirteen antibodies were isolated from B cell culture, and eight were isolated using trimeric envelope probes for differential single B cell sorting. One of the new antibodies displayed a 10-fold greater neutralization potency than previously published lineage members. This antibody, CAP256-VRC26.25, neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency. Among the viruses neutralized, the median 50% inhibitory concentration was 0.001 μg/ml. All 33 lineage members targeted a quaternary epitope focused on V2. While all known bNAbs targeting the V1V2 region interact with the N160 glycan, the CAP256-VRC26 antibodies showed an inverse correlation of neutralization potency with dependence on this glycan. Overall, our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent. IMPORTANCE Studies of HIV-1 broadly neutralizing antibodies (bNAbs) provide valuable information for vaccine design, and the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of V1V2-directed neutralizing antibodies from an HIV-1 clade C-infected donor. Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. One of the new antibodies, CAP256-VRC26.25, displayed a 10-fold greater neutralization potency than previously described lineage members. It neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency: the median 50% inhibitory concentration was 0.001 μg/ml. Our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5802
Author(s):  
Yuji Iwaoka ◽  
Shoichi Suzuki ◽  
Nana Kato ◽  
Chisa Hayakawa ◽  
Satoko Kawabe ◽  
...  

In this study, we present the isolation and characterization of the structure of six gallotannins (1–6), three ellagitannins (7–9), a neolignan glucoside (10), and three related polyphenolic compounds (gallic acid, 11 and 12) from Trapa bispinosa Roxb. pericarp extract (TBE). Among the isolates, the structure of compound 10 possessing a previously unclear absolute configuration was unambiguously determined through nuclear magnetic resonance and circular dichroism analyses. The α-glucosidase activity and glycation inhibitory effects of the isolates were evaluated. Decarboxylated rugosin A (8) showed an α-glucosidase inhibitory activity, while hydrolyzable tannins revealed stronger antiglycation activity than that of the positive control. Furthermore, the identification and quantification of the TBE polyphenols were investigated by high-performance liquid chromatography coupled to ultraviolet detection and electrospray ionization mass spectrometry analysis, indicating the predominance of gallic acid, ellagic acid, and galloyl glucoses showing marked antiglycation properties. These findings suggest that there is a potential food industry application of polyphenols in TBE as a functional food with antidiabetic and antiglycation activities.


2021 ◽  
Author(s):  
Sonika Sharma ◽  
Sibnarayan Datta ◽  
Soumya Chatterjee ◽  
Moumita Dutta ◽  
Jhuma Samanta ◽  
...  

Abstract To treat antibiotic resistance bacteria, bacteriophage (also called 'phage') application has recently drawn considerable attention from researchers globally. Bacteria like Pseudomonas aeruginosa are known to be associated with nosocomial infections especially in patients with compromised immune systems. In the present work, phage against P. aeruginosa (named 'DRLP1') was isolated from wastewater, enriched and characterized. Morphologically DRLP1 belongs to the family Myoviridae with a high lytic ability. DRLP1 has a burst size of approximately 100 PFU/infected cells, a rapid adsorption time when supplemented with MgCl2, and has viability in a wide temperature range and pH. Genomic sequencing and bioinformatics analysis showed that the phage genome is linear double-stranded, 66,243 bp in length and have a GC content of 54.9%. the genome encodes 93 phage related ORFs open reading frames (ORFs). Phage stability in lyophilized state, adsorption study on sodium alginate beads, and in-vitro pathogen reduction assays were also investigated. Study carried out with artificially contaminated fomites suggests that this phage has the potential for application as a biological decontaminant agent against P. aeruginosa in different conditions.


Sign in / Sign up

Export Citation Format

Share Document