scholarly journals Hydrolysable Tannins Exhibit Acetylcholinesterase Inhibitory and Anti-Glycation Activities In Vitro and Learning and Memory Function Improvements in Scopolamine-Induced Amnesiac Mice

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1066
Author(s):  
Lih-Geeng Chen ◽  
Shyr-Yi Lin ◽  
Yi-Shan Lee ◽  
Ching-Chiung Wang ◽  
Wen-Chi Hou

Agricultural waste from the hulls of water caltrop (Trapa taiwanesis Nakai, TT-hull) was extracted by either steeping them in cold 95% ethanol (C95E), refluxing 95E, refluxing 50E, or refluxing hot water (HW) to obtain C95EE, 95EE, 50EE, and HWE, respectively. These four extracts showed acetylcholinesterase (AChE) inhibitory activities and free radical scavenging activities, as well as anti-non-enzymatic protein glycation in vitro. Eight compounds were isolated from TT-hull-50EE and were used to plot the chromatographic fingerprints of the TT-hull extracts, among which tellimagrandin-I, tellimagrandin-II, and 1,2,3,6-tetra-galloylglucose showed the strongest AChE inhibitory activities, and they also exhibited anti-amyloid β peptide aggregations. The scopolamine-induced amnesiac ICR mice that were fed with TT-hull-50EE or TT-hull-HWE (100 and 200 mg/kg) or tellimagrandin-II (100 and 200 mg/kg) showed improved learning behavior when evaluated using passive avoidance or water maze evaluation, and they showed significant differences (p < 0.05) compared to those in the control group. The enriched hydrolysable tannins of the recycled TT-hull may be developed as functional foods for the treatment of degenerative disorders.

2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Felipe P. Perez ◽  
Bryan Maloney ◽  
Nipun Chopra ◽  
Jorge J. Morisaki ◽  
Debomoy K. Lahiri

AbstractLate Onset Alzheimer’s Disease is the most common cause of dementia, characterized by extracellular deposition of plaques primarily of amyloid-β (Aβ) peptide and tangles primarily of hyperphosphorylated tau protein. We present data to suggest a noninvasive strategy to decrease potentially toxic Aβ levels, using repeated electromagnetic field stimulation (REMFS) in primary human brain (PHB) cultures. We examined effects of REMFS on Aβ levels (Aβ40 and Aβ42, that are 40 or 42 amino acid residues in length, respectively) in PHB cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro 7 (DIV7) treated with 64 MHz, and 1 hour daily for 14 days (DIV 21) had significantly reduced levels of secreted Aβ40 (p = 001) and Aβ42 (p = 0.029) peptides, compared to untreated cultures. PHB cultures (DIV7) treated at 64 MHz, for 1 or 2 hour during 14 days also produced significantly lower Aβ levels. PHB cultures (DIV28) treated with 64 MHz 1 hour/day during 4 or 8 days produced a similar significant reduction in Aβ40 levels. 0.4 W/kg was the minimum SAR required to produce a biological effect. Exposure did not result in cellular toxicity nor significant changes in secreted Aβ precursor protein-α (sAPPα) levels, suggesting the decrease in Aβ did not likely result from redirection toward the α-secretase pathway. EMF frequency and power used in our work is utilized in human magnetic resonance imaging (MRI, thus suggesting REMFS can be further developed in clinical settings to modulate Aβ deposition.


2007 ◽  
Vol 7 (4) ◽  
pp. 1479-1485 ◽  
Author(s):  
I. Ya. Podolski ◽  
Z. A. Podlubnaya ◽  
E. A. Kosenko ◽  
E. A. Mugantseva ◽  
E. G. Makarova ◽  
...  

2015 ◽  
Vol 54 (28) ◽  
pp. 8217-8221 ◽  
Author(s):  
Tahiri Sylla ◽  
Laurent Pouységu ◽  
Grégory Da Costa ◽  
Denis Deffieux ◽  
Jean-Pierre Monti ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Ryan Limbocker ◽  
Roxine Staats ◽  
Sean Chia ◽  
Francesco S. Ruggeri ◽  
Benedetta Mannini ◽  
...  

The aberrant aggregation of proteins is a key molecular event in the development and progression of a wide range of neurodegenerative disorders. We have shown previously that squalamine and trodusquemine, two natural products in the aminosterol class, can modulate the aggregation of the amyloid-β peptide (Aβ) and of α-synuclein (αS), which are associated with Alzheimer’s and Parkinson’s diseases. In this work, we expand our previous analyses to two squalamine derivatives, des-squalamine and α-squalamine, obtaining further insights into the mechanism by which aminosterols modulate Aβ and αS aggregation. We then characterize the ability of these small molecules to alter the physicochemical properties of stabilized oligomeric species in vitro and to suppress the toxicity of these aggregates to varying degrees toward human neuroblastoma cells. We found that, despite the fact that these aminosterols exert opposing effects on Aβ and αS aggregation under the conditions that we tested, the modifications that they induced to the toxicity of oligomers were similar. Our results indicate that the suppression of toxicity is mediated by the displacement of toxic oligomeric species from cellular membranes by the aminosterols. This study, thus, provides evidence that aminosterols could be rationally optimized in drug discovery programs to target oligomer toxicity in Alzheimer’s and Parkinson’s diseases.


Sign in / Sign up

Export Citation Format

Share Document