scholarly journals Modern Wound Dressings: Hydrogel Dressings

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1235
Author(s):  
Valentin Brumberg ◽  
Tatiana Astrelina ◽  
Tatiana Malivanova ◽  
Alexander Samoilov

Chronic wounds do not progress through the wound healing process in a timely manner and are considered a burden for healthcare system; they are also the most common reason for decrease in patient quality of life. Traditional wound dressings e.g., bandages and gauzes, although highly absorbent and effective for dry to mild, exudating wounds, require regular application, which therefore can cause pain upon dressing change. In addition, they have poor adhesional properties and cannot provide enough drainage for the wound. In this regard, the normalization of the healing process in chronic wounds is an extremely urgent task of public health and requires the creation and implementation of affordable dressings for patients with chronic wounds. Modern wound dressings (WDs) are aimed to solve these issues. At the same time, hydrogels, unlike other types of modern WDs (foam, films, hydrocolloids), have positive degradation properties that makes them the perfect choice in applications where a targeted delivery of bioactive substances to the wound is required. This mini review is focused on different types of traditional and modern WDs with an emphasis on hydrogels. Advantages and disadvantages of traditional and modern WDs as well as their applicability to different chronic wounds are elucidated. Furthermore, an effectiveness comparison between hydrogel WDs and the some of the frequently used biotechnologies in the field of regenerative medicine (adipose-derived mesenchymal stem cells (ADMSCs), mesenchymal stem cells, conditioned media, platelet-rich plasma (PRP)) is provided.

2020 ◽  
Author(s):  
Elisa Seria ◽  
George Galea ◽  
Gabriella Grech ◽  
Sarah Samut Tagliaferro ◽  
Alexander Felice

Abstract Background: Chronic leg ulcerations are associated with Haemoglobin disorders, Type 2 Diabetes Mellitus, and long-term venous insufficiency. Mesenchymal stem cells (MSCs) ability to modulate the inflammatory response represents the fundamental requisite for their applicability as a treatment of chronic wounds.Methods: This study aimed to develop a novel bioactive platelet-rich plasma (PRP)-leukocytes-depleted scaffold to reproduce typical clinical wound of patients with poor chronic skin perfusion and low leucocytes infiltration. After scratching the wound model to mimic injury three conditions were compared; an untreated condition, a condition treated with recombinant TNF to mimic an inflammatory state and a condition treated with TNF and also with MSCs to evaluate how the latter’s immunomodulatory properties affect the therapeutic outcomes in an inflammatory state. Gene expression of IL8 and TGFA were analysed in biological triplicates of the three conditions. Statistical analysis was done through a paired student t-test and a p <0.05 was considered significant.Results: We set up a skin model that consisted of a leukocyte-depleted, platelet-rich plasma scaffold, with embedded fibroblasts as dermal equivalent and seeded keratinocytes on it as multi-layered epidermidis. IL8 expression increased upon scratching (p=0.014) and continued to increase up to day 1 (p=0.048). IL8 expression decreased upon administration of TNF (p=0.005) but then increased again. IL8 expression decreased in the untreated condition after day 1 as the natural healing process took place and was lower than in treated conditions in day 8 (p=0.048). TGFA expression decreased upon scratching (p=0.006) and increased again in day 1, more so in the untreated than in the treated conditions (p=0.02). TGFA expression decreased again in day 4 in the study group before increasing sharply (p=0.027) in day 8 to reach pre-scratch levels. Conclusion: This study found that a leukocyte-depleted PRP-based skin equivalent can be useful in the study of treatments of chronic wounds. This study also indicates that MSCs appear to modulate the expression of IL8 by switching from an immunosuppressive phenotype to a pro-inflammatory phenotype. These results indicate that the administration of MSCs could offer a potential therapeutic approach for the treatment of leg ulcers in patients with poor skin perfusion.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


2021 ◽  
Vol 11 (9) ◽  
pp. 890
Author(s):  
Andreea Barbu ◽  
Bogdan Neamtu ◽  
Marius Zăhan ◽  
Gabriela Mariana Iancu ◽  
Ciprian Bacila ◽  
...  

Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Álvaro Sierra-Sánchez ◽  
Kevin H. Kim ◽  
Gonzalo Blasco-Morente ◽  
Salvador Arias-Santiago

AbstractWound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers’ purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient’s health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Suman Kanji ◽  
Hiranmoy Das

Cutaneous wound healing is a complex multiple phase process, which overlaps each other, where several growth factors, cytokines, chemokines, and various cells interact in a well-orchestrated manner. However, an imbalance in any of these phases and factors may lead to disruption in harmony of normal wound healing process, resulting in transformation towards chronic nonhealing wounds and abnormal scar formation. Although various therapeutic interventions are available to treat chronic wounds, current wound-care has met with limited success. Progenitor stem cells possess potential therapeutic ability to overcome limitations of the present treatments as it offers accelerated wound repair with tissue regeneration. A substantial number of stem cell therapies for cutaneous wounds are currently under development as a result of encouraging preliminary findings in both preclinical and clinical studies. However, the mechanisms by which these stem cells contribute to the healing process have yet to be elucidated. In this review, we emphasize on the major treatment modalities currently available for the treatment of the wound, role of various interstitial stem cells and exogenous adult stem cells in cutaneous wound healing, and possible mechanisms involved in the healing process.


2020 ◽  
Vol 1 (4) ◽  
pp. 01-08
Author(s):  
Farzaneh Chehelcheraghi ◽  
Khadijah Rezazadeh ◽  
Khatereh Anbari

Background and Objective: Wound dressing and healing in diabetic patients is encountered with many problems. This study aimed to investigate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on the survival of random skin flap (RSF) on Streptozotocin-induced diabetic rats (STZ) using an optical microscope. Materials & Methods: In this study, 60 male Albino Wistar rats were used (average weight 250-300 gr). The rats were divided into six groups: 1) Health-Non (HN), 2) Health-Cells (HC), 3) Health-Sham (HS), 4) Diabetic-Non (DN) that were became diabetic by injecting STZ 70 mg/kg intraperitoneally), 5) Diabetic-Sham (DS), and 6) Diabetic-Cell (DC). In all groups, the day of surgery was considered as the zero day, on the back area of animal, the flap was created with a size of 8 × 3 cm and the BM-MSCs were performed. The sampling was performed on day 7 after surgery from the region where Transitional Zone (TZ) necrosis was initiated. Results: BM-MSCs increased the number of blood vessels (P=0.009) and the histology parameters (wound demarcation P=0.0001, granulation tissue P=0.0001) significantly compared to the control group. But this increase was not significant in the area of the survival region. Conclusion: It was concluded that after treatment with BM-MSCs, the wound healing process in both non-diabetic and diabetic groups was increased in accordance with histological characteristics.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sabrina Valente ◽  
Carmen Ciavarella ◽  
Emanuela Pasanisi ◽  
Francesca Ricci ◽  
Andrea Stella ◽  
...  

Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs). hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL) from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki–67 assay), migration (scratch and transwell assays), and angiogenesis (Matrigel) were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR). The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1467
Author(s):  
Do-Wan Kim ◽  
Chang-Hyung Choi ◽  
Jong Pil Park ◽  
Sei-Jung Lee

Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases, but the clinical application of curcumin is restricted by its poor aqueous solubility and its low permeability and bioavailability levels. In the present study, we investigate the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human mesenchymal stem cells (MSCs) during the skin wound healing process. CN significantly increased the motility of umbilical cord blood (UCB)-MSCs and showed 10,000-fold greater migration efficacy than curcumin. CN stimulated the phosphorylation of c-Src and protein kinase C which are responsible for the distinctive activation of the MAPKs. Interestingly, CN significantly induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhanced wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.


Sign in / Sign up

Export Citation Format

Share Document