scholarly journals A Use of Tritium-Labeled Peat Fulvic Acids and Polyphenolic Derivatives for Designing Pharmacokinetic Experiments on Mice

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1787
Author(s):  
Gennady A. Badun ◽  
Maria G. Chernysheva ◽  
Yury V. Zhernov ◽  
Alina S. Poroshina ◽  
Valery V. Smirnov ◽  
...  

Natural products (e.g., polyphenols) have been used as biologically active compounds for centuries. Still, the mechanisms of biological activity of these multicomponent systems are poorly understood due to a lack of appropriate experimental techniques. The method of tritium thermal bombardment allows for non-selective labeling and tracking of all components of complex natural systems. In this study, we applied it to label two well-characterized polyphenolic compounds, peat fulvic acid (FA-Vi18) and oxidized lignin derivative (BP-Cx-1), of predominantly hydrophilic and hydrophobic character, respectively. The identity of the labeled samples was confirmed using size exclusion chromatography. Using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), key differences in the molecular composition of BP-Cx-1 and FA-Vi18 were revealed. The labeled samples ([3H]-FA-Vi18 (10 mg/kg) and [3H]-BP-Cx-1 (100 mg/kg)) were administered to female BALB/c mice intravenously (i.v.) and orally. The label distribution was assessed in blood, liver, kidneys, brain, spleen, thymus, ovaries, and heart using liquid scintillation counting. Tritium label was found in all organs studied at different concentrations. For the fulvic acid sample, the largest accumulation was observed in the kidney (Cmax 28.5 mg/kg and 5.6 mg/kg, respectively) for both routes. The organs of preferential accumulation of the lignin derivative were the liver (Cmax accounted for 396.7 and 16.13 mg/kg for i.v. and p.o. routes, respectively) and kidney (Cmax accounted for 343.3 and 17.73 mg/kg for i.v. and p.o. routes, respectively). Our results demonstrate that using the tritium labeling technique enabled successful pharmacokinetic studies on polyphenolic drugs with very different molecular compositions. It proved to be efficient for tissue distribution studies. It was also shown that the dosage of the polyphenolic drug might be lower than 10 mg/kg due to the sensitivity of the 3H detection technique.

1994 ◽  
Vol 72 (02) ◽  
pp. 275-280 ◽  
Author(s):  
David Brieger ◽  
Joan Dawes

SummaryIt is widely reported that persistent anti-Xa activity follows administration of low molecular weight heparins. To identify the effectors of this activity we have injected 125I-labelled Enoxaparin sodium into rabbits and subsequently analysed the circulating radiolabelled material and anti-Xa activity by affinity and size exclusion chromatography. Antithrombin III-binding material derived from the injected drug was responsible for all the anti-Xa amidolytic activity. At early times after injection additional anticoagulant activity which was largely attributable to tissue factor pathway inhibitor was measured by the Heptest clotting assay after removal of glycosaminoglycans from plasma samples. Small radiolabelled fragments, including penta/hexasaccharide with affinity for antithrombin III, were detectable in the circulation 1 week later, and sulphated oligosaccharides persisted for 3-4 weeks. Significant quantities of radiolabel remained in the liver and kidney several weeks post-injection; these organs may sequester some of the injected drug and give rise to circulating biologically active material by degradation and secretion of catabolic products into the plasma.


1986 ◽  
Vol 163 (2) ◽  
pp. 463-468 ◽  
Author(s):  
A Köck ◽  
M Danner ◽  
B M Stadler ◽  
T A Luger

Human IL-1 was successfully used to produce an anti-IL-1 mAb. Anti-IL-1 (IgG2a) blocked IL-1-mediated thymocyte and fibroblast proliferation, but did not interfere with the biological effects of other lymphokines, such as IL-2 or IL-3. The antibody immunoprecipitated biosynthetically radiolabeled 33, 17, and 4 kD IL-1. An immunoadsorbent column yielded 20% of initial activity, and upon HPLC size-exclusion chromatography, affinity-purified IL-1 had a molecular mass of approximately 4 kD. These results provide first evidence of a monoclonal anti-IL-1 that reacts with different species of IL-1 and apparently binds to an epitope close to the active site of IL-1. Thus, anti-IL-1 IgG may be very helpful for further investigations of the molecular as well as biological characteristics of IL-1 and related mediators.


2020 ◽  
Vol 10 (2) ◽  
pp. 470 ◽  
Author(s):  
Marta Ziaja-Sołtys ◽  
Wojciech Radzki ◽  
Jakub Nowak ◽  
Jolanta Topolska ◽  
Ewa Jabłońska-Ryś ◽  
...  

Water soluble polysaccharides (WSP) were isolated from Lentinus edodes fruiting bodies. The mushrooms were previously subjected to various processing techniques which included blanching, boiling, and fermenting with lactic acid bacteria. Therefore, the impact of processing on the content and biological activities of WSP was established. Non-processed fruiting bodies contained 10.70 ± 0.09 mg/g fw. Boiling caused ~12% decrease in the amount of WSP, while blanched and fermented mushrooms showed ~6% decline. Fourier transform infrared spectroscopy analysis (FTIR) confirmed the presence of β-glycosidic links, whereas due to size exclusion chromatography 216 kDa and 11 kDa molecules were detected. WSP exhibited antioxidant potential in FRAP (ferric ion reducing antioxidant power) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays. Cytotoxic properties were determined on MCF-7 and T47D human breast cell lines using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test. Both biological activities decreased as the result of boiling and fermenting.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Gabriel Biringanine ◽  
Moustapha Ouedraogo ◽  
Bernard Vray ◽  
Anne Berit Samuelsen ◽  
Pierre Duez

A previous work on Plantago palmata polysaccharides (PS) attributed immunomodulatory properties of leaves to a polysaccharide fraction (PS50) that stimulated NO and TNF-α production by interferon gamma- (IFN-γ-) activated macrophages. The present work aims to elucidate the chemical structure of these immunomodulatory polysaccharides. Size exclusion chromatography showed that the active polymers present an active fraction with a very high molecular weight (about 1200 kDa). These polysaccharides are pectic in nature, with a predominantly unbranched galacturonan domain and with a domain bearing side chains that consist of highly branched arabinan, galactan, and/or arabinogalactan. Comparatively to the well-known Plantago major biologically active PS, Plantago palmata PS50 contained less arabinogalactan-proteins (AGPs) and had a different composition in glucose, galactose, and galacturonic acid. DNA contamination of the polysaccharide was estimated at about 0.04%, a concentration much lower than those reported immunomodulatory in hyaluronic acid preparations (3 to 15%). Therefore, the eventuality of a contaminating DNA-mediated biological activity could be ruled out.


2014 ◽  
Vol 21 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Cátia Salvador ◽  
M. Rosário Martins ◽  
A. Teresa Caldeira

AbstractDifferent compounds of edible mushrooms are responsible for their bioactivity. The ability to synthesize polysaccharides, namely protein–polysaccharide (PPS) complexes, is related to the antioxidant capacity of these compounds and present great interest in preventing a number of diseases, including cancer, cardiovascular and auto-immune diseases, and accelerated aging. Amanita ponderosa are wild edible mushrooms that grow in Mediterranean “montado” areas [Portuguese name given to cork oak (Quercus suber) and holm oak (Quercus ilex) forests]. The aim of this study was to evaluate the production of PPS complexes obtained from A. ponderosa cultures using a new microanalytical approach to quickly and easily monitor the production process. Microanalysis using Fourier-transform infrared using attenuated total reflection and Raman spectroscopy of PPS samples showed spectra compatible with identification of this type of compound in culture extracts. PPS separated by size-exclusion chromatography showed seven main complexes. Molecular weights of the main PPS complexes isolated from cultures ranged between 1.5 and 20 kDa and did not present toxicity against Artemia salina, demonstrating the potential of A. ponderosa as a source of biologically active compounds with nutraceutical value. Application of this microanalytical approach to monitoring the production of PPS compounds can be successfully applied in biotechnological processes.


Sign in / Sign up

Export Citation Format

Share Document