scholarly journals Self-Actuated Paper and Wood Models: Low-Cost Handcrafted Biomimetic Compliant Systems for Research and Teaching

Biomimetics ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 42
Author(s):  
Simon Poppinga ◽  
Pablo Schenck ◽  
Olga Speck ◽  
Thomas Speck ◽  
Bernd Bruchmann ◽  
...  

The abstraction and implementation of plant movement principles into biomimetic compliant systems are of increasing interest for technical applications, e.g., in architecture, medicine, and soft robotics. Within the respective research and development approaches, advanced methods such as 4D printing or 3D-braiding pultrusion are typically used to generate proof-of-concept demonstrators at the laboratory or demonstrator scale. However, such techniques are generally time-consuming, complicated, and cost-intensive, which often impede the rapid realization of a sufficient number of demonstrators for testing or teaching. Therefore, we have produced comparable simple handcrafted compliant systems based on paper, wood, plastic foil, and/or glue as construction materials. A variety of complex plant movement principles have been transferred into these low-cost physical demonstrators, which are self-actuated by shrinking processes induced by the anisotropic hygroscopic properties of wood or paper. The developed systems have a high potential for fast, precise, and low-cost abstraction and transfer processes in biomimetic approaches and for the “hands-on understanding” of plant movements in applied university and school courses.

2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


2020 ◽  
Vol 53 (2) ◽  
pp. 15161-15166
Author(s):  
Rodolfo Orjuela ◽  
Jean-Philippe Lauffenburger ◽  
Jonathan Ledy ◽  
Michel Basset ◽  
Joel Lambert ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
Roberto J. López-Sastre ◽  
Marcos Baptista-Ríos ◽  
Francisco Javier Acevedo-Rodríguez ◽  
Soraya Pacheco-da-Costa ◽  
Saturnino Maldonado-Bascón ◽  
...  

In this paper, we present a new low-cost robotic platform that has been explicitly developed to increase children with neurodevelopmental disorders’ involvement in the environment during everyday living activities. In order to support the children and youth with both the sequencing and learning of everyday living tasks, our robotic platform incorporates a sophisticated online action detection module that is capable of monitoring the acts performed by users. We explain all the technical details that allow many applications to be introduced to support individuals with functional diversity. We present this work as a proof of concept, which will enable an assessment of the impact that the developed technology may have on the collective of children and youth with neurodevelopmental disorders in the near future.


2021 ◽  
Vol 11 (12) ◽  
pp. 5330
Author(s):  
Gisela Pujol-Vázquez ◽  
Alessandro N. Vargas ◽  
Saleh Mobayen ◽  
Leonardo Acho

This paper describes how to construct a low-cost magnetic levitation system (MagLev). The MagLev has been intensively used in engineering education, allowing instructors and students to learn through hands-on experiences of essential concepts, such as electronics, electromagnetism, and control systems. Built from scratch, the MagLev depends only on simple, low-cost components readily available on the market. In addition to showing how to construct the MagLev, this paper presents a semi-active control strategy that seems novel when applied to the MagLev. Experiments performed in the laboratory provide comparisons of the proposed control scheme with the classical PID control. The corresponding real-time experiments illustrate both the effectiveness of the approach and the potential of the MagLev for education.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wan-Sik Won ◽  
Rosy Oh ◽  
Woojoo Lee ◽  
Sungkwan Ku ◽  
Pei-Chen Su ◽  
...  

AbstractThe hygroscopic property of particulate matter (PM) influencing light scattering and absorption is vital for determining visibility and accurate sensing of PM using a low-cost sensor. In this study, we examined the hygroscopic properties of coarse PM (CPM) and fine PM (FPM; PM2.5) and the effects of their interactions with weather factors on visibility. A censored regression model was built to investigate the relationships between CPM and PM2.5 concentrations and weather observations. Based on the observed and modeled visibility, we computed the optical hygroscopic growth factor, $$f\left( {RH} \right)$$ f RH , and the hygroscopic mass growth, $$GM_{VIS}$$ G M VIS , which were applied to PM2.5 field measurement using a low-cost PM sensor in two different regions. The results revealed that the CPM and PM2.5 concentrations negatively affect visibility according to the weather type, with substantial modulation of the interaction between the relative humidity (RH) and PM2.5. The modeled $$f\left( {RH} \right)$$ f RH agreed well with the observed $$f\left( {RH} \right)$$ f RH in the RH range of the haze and mist. Finally, the RH-adjusted PM2.5 concentrations based on the visibility-derived hygroscopic mass growth showed the accuracy of the low-cost PM sensor improved. These findings demonstrate that in addition to visibility prediction, relationships between PMs and meteorological variables influence light scattering PM sensing.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Joyoung Lee ◽  
Zijia Zhong ◽  
Bo Du ◽  
Slobodan Gutesa ◽  
Kitae Kim

This paper presents a low-cost and energy-saving urban mobility monitoring system based on wireless sensor networks (WSNs). The primary components of the proposed sensor unit are a Bluetooth sensor and a Zigbee transceiver. Within the WSN, the Bluetooth sensor captures the MAC addresses of Bluetooth units equipped in mobile devices and car navigation systems. The Zigbee transceiver transmits the collected MAC addresses to a data center without any major communications infrastructures (e.g., fiber optics and 3G/4G network). A total of seven prototype sensor units have been deployed on roadway segments in Newark, New Jersey, for a proof of concept (POC) test. The results of the POC test show that the performance of the proposed sensor unit appears promising, resulting in 2% of data drop rates and an improved Bluetooth capturing rate.


2019 ◽  
Vol 73 ◽  
pp. 167-179 ◽  
Author(s):  
Rafaela C. de Freitas ◽  
Rodrigo Alves ◽  
Abel G. da Silva Filho ◽  
Ricardo E. de Souza ◽  
Byron L.D. Bezerra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document