scholarly journals How Human Single-Neuron Recordings Can Help Us Understand Cognition: Insights from Memory Studies

2021 ◽  
Vol 11 (4) ◽  
pp. 443
Author(s):  
Zuzanna Roma Kubska ◽  
Jan Kamiński

Understanding human cognition is a key goal of contemporary neuroscience. Due to the complexity of the human brain, animal studies and noninvasive techniques, however valuable, are incapable of providing us with a full understanding of human cognition. In the light of existing cognitive theories, we describe findings obtained thanks to human single-neuron recordings, including the discovery of concept cells and novelty-dependent cells, or activity patterns behind working memory, such as persistent activity. We propose future directions for studies using human single-neuron recordings and we discuss possible opportunities of investigating pathological brain.

2021 ◽  
Author(s):  
Daming Li ◽  
Christos Constantinidis ◽  
John D. Murray

AbstractA hallmark neuronal correlate of working memory (WM) is stimulus-selective spiking activity of neurons in prefrontal cortex (PFC) during mnemonic delays. These observations have motivated an influential computational modeling framework in which WM is supported by persistent activity. Recently this framework has been challenged by arguments that observed persistent activity may be an artifact of trial-averaging, which potentially masks high variability of delay activity at the single-trial level. In an alternative scenario, WM delay activity could be encoded in bursts of selective neuronal firing which occur intermittently across trials. However, this alternative proposal has not been tested on single-neuron spike-train data. Here, we developed a framework for addressing this issue by characterizing the trial-to-trial variability of neuronal spiking quantified by Fano factor (FF). By building a doubly stochastic Poisson spiking model, we first demonstrated that the burst-coding proposal implies a significant increase in FF positively correlated with firing rate, and thus loss of stability across trials during the delay. Simulation of spiking cortical circuit WM models further confirmed that FF is a sensitive measure that can well dissociate distinct WM mechanisms. We then tested these predictions on datasets of single-neuron recordings from macaque prefrontal cortex during three WM tasks. In sharp contrast to the burst-coding model predictions, we only found a small fraction of neurons showing increased WM-dependent burstiness, and stability across trials during delay was strengthened in empirical data. Therefore, reduced trial-to-trial variability during delay provides strong constraints on the contribution of single-neuron intermittent bursting to WM maintenance.Significance StatementThere are diverging classes of theoretical models explaining how information is maintained in working memory by cortical circuits. In an influential model class, neurons fire exhibit persistent elevated memorandum-selective firing, whereas a recently developed class of burst-coding models suggests that persistent activity is an artifact of trial-averaging, and spiking is sparse in each single trial, subserved by brief intermittent bursts. However, this alternative picture has not been characterized or tested on empirical spike-train data. Here we combine mathematical analysis, computational model simulation and experimental data analysis to test empirically theses two classes of models and show that the trial-to-trial variability of empirical spike trains is not consistent with burst coding. These findings provide constraints for theoretical models of working memory.


2019 ◽  
Author(s):  
Jorge F. Mejias ◽  
Xiao-Jing Wang

Recent evidence suggests that persistent neural activity underlying working memory is not a local phenomenon but distributed across multiple brain regions. To elucidate the circuit mechanism of such distributed activity, we developed an anatomically constrained computational model of large-scale macaque cortex. We found that inter-areal reverberation can support the emergence of persistent activity, even when the model operates in a regime where none of the isolated areas is capable of generating persistent activity. Persistent activity exhibits a gap of firing rate at particular cortical areas, indicating a robust bifurcation in space. Model analysis uncovered a host of spatially distinct attractor states, and yielded novel experimentally testable predictions. In the model, distributed activity patterns are resilient against simultaneous inactivation of multiple cortical areas, while dependent on a structural core. This work provides a theoretical framework for identifying large-scale brain mechanisms and computational principles of distributed cognitive processes.


2020 ◽  
Vol 20 (4) ◽  
pp. 247-258 ◽  
Author(s):  
Hajra Takala ◽  
Qiwei Yang ◽  
Ahmed M. Abd El Razek ◽  
Mohamed Ali ◽  
Ayman Al-Hendy

Lifestyle factors, such as alcohol intake, have placed a substantial burden on public health. Alcohol consumption is increasing globally due to several factors including easy accessibility of this addictive substance besides its legal status and social acceptability. In the US, alcohol is the third leading preventable cause of death (after tobacco, poor diet and physical inactivity) with an estimated 88,000 people dying from alcohol-related causes annually, representing 1 in 10 deaths among working adults. Furthermore, the economic burden of excess drinking costs the US around $249 billion ($191.1 billion related to binge drinking). Although men likely drink more than women do, women are at much higher risk for alcohol-related problems. Alcohol use is also considered to be one of the most common non-communicable diseases, which affects reproductive health. This review article summarizes the current knowledge about alcohol-related pathogenesis of uterine fibroids (UFs) and highlights the molecular mechanisms that contribute to the development of UFs in response to alcohol consumption. Additionally, the effect of alcohol on the levels of various factors that are involved in UFs pathogenesis, such as steroid hormones, growth factors and cytokines, are summarized in this review. Animal studies of deleterious alcohol effect and future directions are discussed as well.


2021 ◽  
pp. 174702182110105
Author(s):  
Spencer Talbot ◽  
Todor Gerdjikov ◽  
Carlo De Lillo

Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open-arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice’s foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting un-baited poles across trials (Long-term memory) and revisits to poles within each trial (Working memory). Humans tested with a virtual-reality version of the task outperformed mice in foraging efficiency, working memory and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures interspecies differences were maintained throughout three weeks of testing. By contrast, long-term-memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying upon archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates, requires caution.


2021 ◽  
pp. 174702182110267
Author(s):  
Roberto Filippi ◽  
Andrea Ceccolini ◽  
Peter Bright

The development of verbal fluency is associated with the maturation of executive function skills, such as the ability to inhibit irrelevant information, shift between tasks and hold information in working memory. Some evidence suggests that multilinguistic upbringing may underpin disadvantages in verbal fluency and lexical retrieval, but can also afford executive function advantages beyond the language system including possible beneficial effects in older age. This study examined the relationship between verbal fluency and executive function in 324 individuals across the lifespan by assessing the developmental trajectories of English monolingual and multilingual children aged 7 to 15 years (N=154) and adults from 18 to 80 years old (N=170). The childhood data indicated patterns of improvement in verbal fluency and executive function skills as a function of age. Multilingual and monolingual children had comparable developmental trajectories in all linguistic and non-linguistic measures used in the study with the exception of planning, for which monolingual children showed a steeper improvement over the studied age range relative to multilingual children. For adults, monolinguals and multilingual participants had comparable performance on all measures with the exception of non-verbal inhibitory control and response times on the Tower of London task: monolinguals showed a steeper decline associated with age. Exploratory factor analysis indicated that verbal fluency was associated with working memory and fluid intelligence in monolingual participants but not in multilinguals. These findings raise the possibility that early acquisition of an additional language may impact on the development of the functional architecture serving high-level human cognition.


2021 ◽  
Vol 23 (5) ◽  
Author(s):  
Niall M. McGowan ◽  
Kate E. A. Saunders

Abstract Purpose of Review We review the recent evidence suggesting that circadian rhythm disturbance is a common unaddressed feature of borderline personality disorder (BPD); amelioration of which may confer substantial clinical benefit. We assess chronobiological BPD studies from a mechanistic and translational perspective and highlight opportunities for the future development of this hypothesis. Recent Findings The emerging circadian phenotype of BPD is characterised by a preponderance of comorbid circadian rhythm sleep-wake disorders, phase delayed and misaligned rest-activity patterns and attenuated amplitudes of usually well-characterised circadian rhythms. Such disturbances may exacerbate symptom severity, and specific maladaptive personality dimensions may produce a liability towards extremes in chronotype. Pilot studies suggest intervention may be beneficial, but development is limited. Summary Endogenous and exogenous circadian rhythm disturbances appear to be common in BPD. The interface between psychiatry and chronobiology has led previously to novel efficacious strategies for the treatment of psychiatric disorders. We believe that better characterisation of the circadian phenotype in BPD will lead to a directed biological target for treatment in a condition where there is a regrettable paucity of accessible therapies.


Author(s):  
Jinzhuang Huang ◽  
Lei Xie ◽  
Ruiwei Guo ◽  
Jinhong Wang ◽  
Jinquan Lin ◽  
...  

Abstract Hemodialysis (HD) is associated with cognitive impairment in patients with end-stage renal disease (ESRD). However, the neural mechanism of spatial working memory (SWM) impairment in HD-ESRD patients remains unclear. We investigated the abnormal alterations in SWM-associated brain activity patterns in HD-ESRD patients using blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) technique during n-back tasks. Twenty-two HD-ESRD patients and 22 well-matched controls underwent an fMRI scan while undergoing a three-load n-back tasks with different difficulty levels. Cognitive and mental states were assessed using a battery of neuropsychologic tests. The HD-ESRD patients exhibited worse memory abilities than controls. Compared with the control group, the HD-ESRD patient group showed lower accuracy and longer response time under the n-back tasks, especially in the 2-back task. The patterns of brain activation changed under different working memory loads in the HD-ESRD patients, showing decreased activity in the right medial frontal gyrus and inferior frontal gyrus under 0-back and 1-back task, while more decreased activation in the bilateral frontal cortex, parietal lobule, anterior/posterior cingulate cortex and insula cortex under 2-back task. With the increase of task difficulty, the activation degree of the frontal and parietal cortex decreased. More importantly, we found that lower activation in frontal cortex and parietal lobule was associated with worse cognitive function in the HD-ESRD patients. These results demonstrate that the abnormal brain activity patterns of frontal cortex and parietal lobule may reflect the neural mediation of SWM impairment.


2018 ◽  
Vol 68 (1) ◽  
pp. 217-234 ◽  
Author(s):  
Pantelis Samartsidis ◽  
Claudia R. Eickhoff ◽  
Simon B. Eickhoff ◽  
Tor D. Wager ◽  
Lisa Feldman Barrett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document