scholarly journals Longitudinal Changes in Temporospatial Gait Characteristics during the First Year Post-Stroke

2021 ◽  
Vol 11 (12) ◽  
pp. 1648
Author(s):  
John W. Chow ◽  
Dobrivoje S. Stokic

Given the paucity of longitudinal data in gait recovery after stroke, we compared temporospatial gait characteristics of stroke patients during subacute (<2 months post-onset, T0) and at approximately 6 and 12 months post-onset (T1 and T2, respectively) and explored the relationship between gait characteristics at T0 and the changes in gait speed from T0 to T1. Forty-six participants were assessed at T0 and a subsample of 24 participants at T2. Outcome measures included Fugl-Meyer lower-extremity motor score, 14 temporospatial gait parameters and symmetry indices of 5 step parameters. Except for step width, all temporospatial parameters improved from T0 to T1 (p ≤ 0.0001). Additionally, significant improvements in symmetry were found for the initial double-support time and single-support time (p ≤ 0.0001). Although group results at T2 were not different from those at T1, the individual analysis revealed that 42% (10/24) of the subsample showed a significant increase in gait speed. The increase in gait speed from T0 to T1 was negatively correlated with gait speed and stride length, and positively correlated with the symmetry indices of stance and single-support times at T0 (p ≤ 0.002). Temporospatial gait parameters and stance time symmetry improve over the first 6 months after stroke with an apparent plateau thereafter. Approximately 40% of the subsample continue to increase gait speed from 6 to 12 months post-stroke. A greater increase in gait speed during the first 6 months post-stroke is associated with initially slower walking, shorter stride length, and more pronounced asymmetry in stance and single-support times. The improvement in lower-extremity motor function and bilateral improvements in step parameters collectively suggest that gait changes over the first 12 months after stroke are likely due to neurological recovery, although some compensation by the non-paretic side cannot be excluded.

2020 ◽  
Vol 25 ◽  
pp. 7-18
Author(s):  
Kadri Medijainen ◽  
Mati Pääsuke ◽  
Aet Lukmann ◽  
Pille Taba

Parkinson’s disease (PD) is a neurodegenerative disease, influencing mainly elderly. The key motor factor affecting the level of participation in activities of daily living is the gait function, which is known to be progressively impaired in PD. However, gait characteristics also worsen due to normal aging. The main aim of this study was to investigate whether gait parameters decline in individuals with PD in an interval of one year compared to healthy elderly. Selected gait characteristics were recorded using 3-D optoelectronic movement analysis system ELITE in 13 patients with mild-to-moderate PD and 13 age- and gender-matched controls. Hoehn and Yahr Scale and Unified Parkinson Disease Rating Scale were used for clinical assessment. It was found that PD patients walk with significantly shorter steps and stride and reduced gait speed. In one year, the stride length initiated with right foot and stride walk ratio further decrease in PD patients. On re-evaluation the percentages of stance, swing and double support phase differed significantly between groups. In second measurement, control subjects walked with reduced step width. It was concluded that gait speed and stride length decline in patients with PD in a period of one year, whereas no indication of deterioration of gait function is evident in healthy controls.


10.2196/27087 ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. e27087
Author(s):  
Julie Soulard ◽  
Jacques Vaillant ◽  
Athan Baillet ◽  
Philippe Gaudin ◽  
Nicolas Vuillerme

Background Axial spondyloarthritis (axSpA) can lead to spinal mobility restrictions associated with restricted lower limb ranges of motion, thoracic kyphosis, spinopelvic ankylosis, or decrease in muscle strength. It is well known that these factors can have consequences on spatiotemporal gait parameters during walking. However, no study has assessed spatiotemporal gait parameters in patients with axSpA. Divergent results have been obtained in the studies assessing spatiotemporal gait parameters in ankylosing spondylitis, a subgroup of axSpA, which could be partly explained by self-reported pain intensity scores at time of assessment. Inertial measurement units (IMUs) are increasingly popular and may facilitate gait assessment in clinical practice. Objective This study compared spatiotemporal gait parameters assessed with foot-worn IMUs in patients with axSpA and matched healthy individuals without and with pain intensity score as a covariate. Methods A total of 30 patients with axSpA and 30 age- and sex-matched healthy controls performed a 10-m walk test at comfortable speed. Various spatiotemporal gait parameters were computed from foot-worn inertial sensors including gait speed in ms–1 (mean walking velocity), cadence in steps/minute (number of steps in a minute), stride length in m (distance between 2 consecutive footprints of the same foot on the ground), swing time in percentage (portion of the cycle during which the foot is in the air), stance time in percentage (portion of the cycle during which part of the foot touches the ground), and double support time in percentage (portion of the cycle where both feet touch the ground). Results Age, height, and weight were not significantly different between groups. Self-reported pain intensity was significantly higher in patients with axSpA than healthy controls (P<.001). Independent sample t tests indicated that patients with axSpA presented lower gait speed (P<.001) and cadence (P=.004), shorter stride length (P<.001) and swing time (P<.001), and longer double support time (P<.001) and stance time (P<.001) than healthy controls. When using pain intensity as a covariate, spatiotemporal gait parameters were still significant with patients with axSpA exhibiting lower gait speed (P<.001), shorter stride length (P=.001) and swing time (P<.001), and longer double support time (P<.001) and stance time (P<.001) than matched healthy controls. Interestingly, there were no longer statistically significant between-group differences observed for the cadence (P=.17). Conclusions Gait was significantly altered in patients with axSpA with reduced speed, cadence, stride length, and swing time and increased double support and stance time. Taken together, these changes in spatiotemporal gait parameters could be interpreted as the adoption of a so-called cautious gait pattern in patients with axSpA. Among factors that may influence gait in patients with axSpA, patient self-reported pain intensity could play a role. Finally, IMUs allowed computation of spatiotemporal gait parameters and are usable to assess gait in patients with axSpA in clinical routine. Trial Registration ClinicalTrials.gov NCT03761212; https://clinicaltrials.gov/ct2/show/NCT03761212 International Registered Report Identifier (IRRID) RR2-10.1007/s00296-019-04396-4


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
He Zhou ◽  
Catherine Park ◽  
Mohammad Shahbazi ◽  
Michele K. York ◽  
Mark E. Kunik ◽  
...  

<b><i>Background:</i></b> Cognitive frailty (CF), defined as the simultaneous presence of cognitive impairment and physical frailty, is a clinical symptom in early-stage dementia with promise in assessing the risk of dementia. The purpose of this study was to use wearables to determine the most sensitive digital gait biomarkers to identify CF. <b><i>Methods:</i></b> Of 121 older adults (age = 78.9 ± 8.2 years, body mass index = 26.6 ± 5.5 kg/m<sup>2</sup>) who were evaluated with a comprehensive neurological exam and the Fried frailty criteria, 41 participants (34%) were identified with CF and 80 participants (66%) were identified without CF. Gait performance of participants was assessed under single task (walking without cognitive distraction) and dual task (walking while counting backward from a random number) using a validated wearable platform. Participants walked at habitual speed over a distance of 10 m. A validated algorithm was used to determine steady-state walking. Gait parameters of interest include steady-state gait speed, stride length, gait cycle time, double support, and gait unsteadiness. In addition, speed and stride length were normalized by height. <b><i>Results:</i></b> Our results suggest that compared to the group without CF, the CF group had deteriorated gait performances in both single-task and dual-task walking (Cohen’s effect size <i>d</i> = 0.42–0.97, <i>p</i> &#x3c; 0.050). The largest effect size was observed in normalized dual-task gait speed (<i>d</i> = 0.97, <i>p</i> &#x3c; 0.001). The use of dual-task gait speed improved the area under the curve (AUC) to distinguish CF cases to 0.76 from 0.73 observed for the single-task gait speed. Adding both single-task and dual-task gait speeds did not noticeably change AUC. However, when additional gait parameters such as gait unsteadiness, stride length, and double support were included in the model, AUC was improved to 0.87. <b><i>Conclusions:</i></b> This study suggests that gait performances measured by wearable sensors are potential digital biomarkers of CF among older adults. Dual-task gait and other detailed gait metrics provide value for identifying CF above gait speed alone. Future studies need to examine the potential benefits of gait performances for early diagnosis of CF and/or tracking its severity over time.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1083
Author(s):  
Zhenghui Lu ◽  
Dong Sun ◽  
Datao Xu ◽  
Xin Li ◽  
Julien S. Baker ◽  
...  

Background: Longtime standing may cause fatigue and discomfort in the lower extremities, leading to an increased risk of falls and related musculoskeletal diseases. Therefore, preventive interventions and fatigue detection are crucial. This study aims to explore whether anti-fatigue mats can improve gait parameters following long periods of standing and try to use machine learning algorithms to identify the fatigue states of standing workers objectively. Methods: Eighteen healthy young subjects were recruited to stand on anti-fatigue mats and hard ground to work 4 h, including 10 min rest. The portable gait analyzer collected walking speed, stride length, gait frequency, single support time/double support time, swing work, and leg fall intensity. A Paired sample t-test was used to compare the difference of gait parameters without standing intervention and standing on two different hardness planes for 4 h. An independent sample t-test was used to analyze the difference between males and females. The K-nearest neighbor (KNN) classification algorithm was performed, the subject’s gait characteristics were divided into non-fatigued and fatigue groups. The gait parameters selection and the error rate of fatigue detection were analyzed. Results: When gender differences were not considered, the intensity of leg falling after standing on the hard ground for 4 h was significantly lower than prior to the intervention (p < 0.05). When considering the gender, the stride length and leg falling strength of female subjects standing on the ground for 4 h were significantly lower than those before the intervention (p < 0.05), and the leg falling strength after standing on the mat for 4 h was significantly lower than that recorded before the standing intervention (p < 0.05). The leg falling strength of male subjects standing on the ground for 4 h was significantly lower than before the intervention (p < 0.05). After standing on the ground for 4 h, female subjects’ walking speed and stride length were significantly lower than those of male subjects (p < 0.05). In addition, the accuracy of testing gait parameters to predict fatigue was medium (75%). After standing on the mat was divided into fatigue, the correct rate was 38.9%, and when it was divided into the non-intervention state, the correct rate was 44.4%. Conclusion: The results show that the discomfort and fatigue caused by standing for 4 h could lead to the gait parameters variation, especially in females. The use of anti-fatigue mats may improve the negative influence caused by standing for a long period. The results of the KNN classification algorithm showed that gait parameters could be identified after fatigue, and the use of an anti-fatigue mat could improve the negative effect of standing for a long time. The accuracy of the prediction results in this study was moderate. For future studies, researchers need to optimize the algorithm and include more factors to improve the prediction accuracy.


2021 ◽  
Vol 13 ◽  
Author(s):  
Linhui Ni ◽  
Wen Lv ◽  
Di Sun ◽  
Yi Sun ◽  
Yu Sun ◽  
...  

Given the limited power of neuropsychological tests, there is a need for a simple, reliable means, such as gait, to identify mild dementia and its subtypes. However, gait characteristics of patients with post-stroke dementia (PSD) and Alzheimer’s disease (AD) are unclear. We sought to describe their gait signatures and to explore gait parameters distinguishing PSD from post-stroke non-dementia (PSND) and patients with AD. We divided 3-month post-stroke patients into PSND and PSD groups based on the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and the activity of daily living (ADL). Thirty-one patients with AD and thirty-two healthy controls (HCs) were also recruited. Ten gait parameters in one single and two dual-task gait tests (counting-backward or naming-animals while walking) were compared among the groups, with adjustment for baseline demographic covariates and the MMSE score. The area under the receiver operating characteristic curve (AUC) was used to identify parameters discriminating PSD from individuals with PSND and AD. Patients with PSD and patients with AD showed impaired stride length, velocity, stride time, and cadence while patients with PSD had altered stance and swing phase proportions (all p ≤ 0.01, post hoc). Patients with AD had smaller toe-off (ToA) and heel-to-ground angles (HtA) (p ≤ 0.01) than HCs in dual-task gait tests. Individuals with PSD had a shorter stride length, slower velocity, and altered stance and swing phase percentages in all tests (p ≤ 0.01), but a higher coefficient of variation of stride length (CoVSL) and time (CoVST) only in the naming animals-task gait test (p ≤ 0.001) than individuals with PSND. ToA and HtA in the naming animals-task gait test were smaller in individuals with AD than those with PSD (p ≤ 0.01). Statistical significance persisted after adjusting for demographic covariates, but not for MMSE. The pace and the percentage of stance or swing phase in all tests, CoVST in the dual-task paradigm, and CoVSL only in the naming animals-task gait test (moderate accuracy, AUC &gt; 0.700, p ≤ 0.01) could distinguish PSD from PSND. Furthermore, the ToA and HtA in the naming animals-task gait paradigm discriminated AD from PSD (moderate accuracy, AUC &gt; 0.700, p ≤ 0.01). Thus, specific gait characteristics could allow early identification of PSD and may allow non-invasive discrimination between PSD and AD, or even other subtypes of dementia.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Lay Khoon Lau ◽  
Jagadish Ullal Mallya ◽  
Wei Jun Benedict Pang ◽  
Kexun Kenneth Chen ◽  
Khalid bin Abdul Jabbar ◽  
...  

Background: Studies indicate that physiological and cognitive aging are causally related and functionally interdependent. However, the relative contribution of physiological factors and cognition to dual-task costs (DTC) of gait parameters has not been well studied. In this cross-sectional study, we examined the trajectory of DTC of gait parameters across the adult age spectrum for both sexes and identified the contributions of physical and cognitive performance to DTC of gait. Methods: A total of 492 community-dwelling adults, aged 21–90 years, were randomly recruited into the study. Participants were divided into 7 age groups, with 10-year age range for each group. Demographic data, height, body mass, education level, and information on comorbidities were recorded. Cognition was measured using the Repeatable Battery for the Assessment of Neuropsychological Status. Physical performance included visual contrast sensitivity, postural sway, hand reaction time, handgrip strength, knee extensor strength, and single-task and dual-task gait assessments. Stepwise multivariable regression was used to examine the association between physical and cognitive performance with DTC of gait parameters. Results: Women were found to have significantly higher DTC of gait speed (p = 0.01), cadence (p < 0.01), and double support time (p < 0.01) than men. However, significant aging effect on DTC of gait speed (p = 0.01), step length (p = 0.01), and double support time (p = 0.01) was observed in men but not in women. Immediate memory was the primary determinant for the DTC of gait speed (β = −0.25, p < 0.01), step length (β = −0.22, p < 0.01), and cadence (β = −0.15, p = 0.03) in men. Besides immediate memory, postural sway (β = −0.13, p = 0.03) and hand reaction (β = 0.14, p = 0.02) were also significantly associated with DTC of step length and cadence, respectively, in women. Conclusion: There were sex differences in the amplitude and trajectories of DTC of gait parameters. The DTC increased with age in men but not in women. Immediate memory was the primary determinant of DTC of gait parameters in men while immediate memory, postural sway, and reaction time were associated with DTC of gait in women. Future studies should investigate the clinical implications of the sex differences in the DTC with fall risks.


2021 ◽  
Vol 61 (1) ◽  
Author(s):  
Goran Radunović ◽  
Zoran Veličković ◽  
Melanija Rašić ◽  
Saša Janjić ◽  
Vladana Marković ◽  
...  

Abstract Background The aim of the study was to assess gait pattern of patients diagnosed with fibromyalgia (FM) while performing demanding motor and/or cognitive dual tasks while walking. Further, idea was to explore possible correlations of dual task gait pattern alterations to patients’ functional status and presence or absence of clinical symptoms associated with FM. Methods Twenty-four female FM patients and 24 healthy female subjects performed a basic walking task, a dual motor, a dual mental (cognitive) and a combined, dual motor and cognitive task simultaneously. Quantitative spatial (stride length) and temporal (cycle time, swing time and double support time) gait parameters were measured using GAITRite walkway system and their variability was assessed. Patients underwent clinical examination including assessment of functional status, pain and fatigue level, psychiatric and cognitive manifestations. Results The motor, cognitive and combined dual tasks affect gait performance in FM patients. Difference in tasks between FM and healthy subjects was found as double support time prolongation. Comparison of tasks showing that cycle time in FM was longer than controls and stride length was shorter in patients for all conditions, while no changes were found in any of the gait parameters variability. Further, mental/cognitive dual tasks had a larger effect than motor tasks. Correlations were also found between depression and functional status of the patients and the gait parameters. Conclusions Gait is affected in FM patients while dual task walking. No changes in stride-to-stride variability point that patients preserve stability in complex walking situations. Analysis of gait may provide additional information for the FM identification based on presence of clinical features and cognitive status. Correlation of dual task gait alterations with occurrence of clinical symptoms and influence of cognitive changes on gait pattern could additionally define FM subgroups.


2020 ◽  
Author(s):  
Massimiliano Pau ◽  
Micaela Porta ◽  
Giuseppina Pilloni ◽  
Giancarlo Coghe ◽  
Eleonora Cocco

Abstract Background: Although the mutual relationship between ambulation and Physical Activity (PA) in people with Multiple Sclerosis (pwMS) has been described in several studies, there is still a lack of detailed information about the way in which specific aspects of the gait cycle are associated with amount and intensity of PA. This study aimed to verify the existence of possible relationships among PA parameters and the spatio-temporal parameters of gait when both are instrumentally assessed.Methods: Thirty-one pwMS (17F, 14M, mean age 52.5, mean Expanded Disability Status Scale score 3.1) were requested to wear a tri-axial accelerometer 24h/day for 7 consecutive days and underwent an instrumental gait analysis, performed using an inertial sensor located on the low back, immediately before the PA assessment period. Main spatio-temporal parameters of gait (i.e. gait speed, stride length, cadence and duration of stance, swing and double support phase) were extracted by processing trunk accelerations. PA was quantified using average number of daily steps and percentage of time spent at different PA intensity, the latter calculated using cut-point sets previously validated for MS. The existence of possible relationships between PA and gait parameters was assessed using Spearman’s rank correlation coefficient rho.Results: Gait speed and stride length were the parameters with the highest number of significant correlations with PA features. In particular, they were found moderately to largely correlated with number of daily steps (rho 0.62, p<0.001), percentage of sedentary activity (rho = -0.44, p<0.001) and percentage of moderate-to-vigorous activity (rho = 0.48, p<0.001). Small to moderate significant correlations were observed between PA intensity and duration of stance, swing and double support phases.Conclusions: The data obtained suggest that the most relevant determinants associated with higher and more intense levels of physical activity in free-living conditions are gait speed and stride length.The simultaneous quantitative assessment of gait parameters and PA levels might represent a useful support for physical therapists in tailoring optimized rehabilitative and training interventions.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Chenzhen Du ◽  
Hongyan Wang ◽  
Heming Chen ◽  
Xiaoyun Fan ◽  
Dongliang Liu ◽  
...  

Aims: Using specials wearable sensors, we explored changes in gait and balance parameters, over time, in elderly patients at high risk of diabetic foot, wearing different types of footwear. This assessed the relationship between gait and balance changes in elderly diabetic patients and the development of foot ulcers, in a bid to uncover potential benefits of wearable devices in the prognosis and management of the aforementioned complication. Methods: A wearable sensor-based monitoring system was used in middle-elderly patients with diabetes who recently recovered from neuropathic plantar foot ulcers. A total of 6 patients (age range: 55–80 years) were divided into 2 groups: the therapeutic footwear group (n = 3) and the regular footwear (n = 3) group. All subjects were assessed for gait and balance throughout the study period. Walking ability and gait pattern were assessed by allowing participants to walk normally for 1 min at habitual speed. The balance assessment program incorporated the “feet together” standing test and the instrumented modified Clinical Test of Sensory Integration and Balance. Biomechanical information was monitored at least 3 times. Results: We found significant differences in stride length (p < 0.0001), stride velocity (p < 0.0001), and double support (p < 0.0001) between the offloading footwear group (OG) and the regular footwear group on a group × time interaction. The balance test embracing eyes-open condition revealed a significant difference in Hip Sway (p = 0.004), COM Range ML (p = 0.008), and COM Position (p = 0.004) between the 2 groups. Longitudinally, the offloading group exhibited slight improvement in the performance of gait parameters over time. The stride length (odds ratio 3.54, 95% CI 1.34–9.34, p = 0.018) and velocity (odds ratio 3.13, 95% CI 1.19–8.19, p = 0.033) of OG patients increased, converse to the double-support period (odds ratio 6.20, 95% CI 1.97–19.55, p = 0.002), which decreased. Conclusions: Special wearable devices can accurately monitor gait and balance parameters in patients in real time. The finding reveals the feasibility and effectiveness of advanced wearable sensors in the prevention and management of diabetic foot ulcer and provides a solid background for future research. In addition, the development of foot ulcers in elderly diabetic patients may be associated with changes in gait parameters and the nature of footwear. Even so, larger follow-up studies are needed to validate our findings.


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Massimiliano Pau ◽  
Federica Corona ◽  
Roberta Pili ◽  
Carlo Casula ◽  
Marco Guicciardi ◽  
...  

This study aimed to investigate possible differences in spatio-temporal gait parameters of people with Parkinson’s Disease (pwPD) when they are tested either in laboratory using 3D Gait Analysis or in a clinical setting using wearable accelerometers. The main spatio-temporal gait parameters (speed, cadence, stride length, stance, swing and double support duration) of 31 pwPD were acquired: i) using a wearable accelerometer in a clinical setting while wearing shoes (ISS); ii) same as condition 1, but barefoot (ISB); iii) using an optoelectronic system (OES) undressed and barefoot. While no significant differences were found for cadence, stance, swing and double support duration, the experimental setting affected speed and stride length that decreased (by 17% and 12% respectively, P<0.005) when passing from the clinical (ISS) to the laboratory (OES) setting. These results suggest that gait assessment should be always performed in the same conditions to avoid errors, which may lead to inaccurate patient’s evaluations.


Sign in / Sign up

Export Citation Format

Share Document