scholarly journals Advanced Multi-Body Modelling of DCCSS Isolators: Geometrical Compatibility and Kinematics

Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 50
Author(s):  
Vincenzo Bianco ◽  
Giorgio Monti ◽  
Nicola Pio Belfiore

The effectiveness of Double Concave Curved Surface Sliders (DCCSS), which initially spread under the name of Double Friction Pendulum (DFP) isolators, was already widely proven by numerous experimental campaigns carried out worldwide. However, many aspects concerning their dynamical behavior still need to be clarified and some details still require improvement and optimization. In particular, due to the boundary geometrical conditions, sliding along the coupled surfaces may not be compliant, where this adjective is adopted to indicate an even distribution of stresses and sliding contact. On the contrary, during an earthquake, the fulfillment of geometrical compatibility between the constitutive bodies naturally gives rise to a very peculiar dynamic behavior, composed of continuous alternation of sticking and slipping phases. Such behavior yields a temporary and cyclic change of topology. Since the constitutive elements can be modelled as rigid bodies, both approaches, namely Compliant Sliding and Stick-Slip, can be numerically modelled by means of techniques typically adopted for multi-body mechanical systems. With the objective of contributing to the understanding and further improvement of this technology, a topology-changing multi-body mechanical model was developed to simulate the DCCSS. In the present work, attention is focused on details regarding geometrical compatibility and kinematics, while the complete dynamics is presented in another work. In particular, for the sake of comparison, the kinematic equations are presented and applied not only for the proposed Stick-Slip approach, but also for the currently accepted Compliant Sliding approach. The main findings are presented and discussed.

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 165-172
Author(s):  
Vincenzo Bianco ◽  
Giorgio Monti ◽  
Nicola Pio Belfiore

The use of friction pendulum devices has recently attracted the attention of both academic and professional engineers for the protection of structures in seismic areas. Although the effectiveness of these has been shown by the experimental testing carried out worldwide, many aspects still need to be investigated for further improvement and optimisation. A thermo-mechanical model of a double friction pendulum device (based on the most recent modelling techniques adopted in multibody dynamics) is presented in this paper. The proposed model is based on the observation that sliding may not take place as ideally as is indicated in the literature. On the contrary, the fulfilment of geometrical compatibility between the constitutive bodies (during an earthquake) suggests a very peculiar dynamic behaviour composed of a continuous alternation of sticking and slipping phases. The thermo-mechanical model of a double friction pendulum device (based on the most recent modelling techniques adopted in multibody dynamics) is presented. The process of fine-tuning of the selected modelling strategy (available to date) is also described.


2012 ◽  
Vol 81 ◽  
pp. 39-48 ◽  
Author(s):  
Ha Xuan Nguyen ◽  
Christoph Edeler ◽  
Sergej Fatikow

This paper gives an overview about problems of modeling of piezo-actuated stick-slip micro-drives. It has been found that existing prototypes of such devices have been investigated empirically. There is only few research dealing with the theory behind this kind of drives. By analyzing the current research activities in this field, it is believed that the model of the drive depends strongly on the friction models, but in most cases neglecting any influences of the guilding system.These analyses are of fundamental importance for an integrated model combining friction model and mechanical model offering promising possibilities for future research.


Author(s):  
R. Dufour ◽  
J. Der Hagopian ◽  
M. Pompei ◽  
C. Garnier

Abstract The dynamic environment of embarqued structures such as radars or more generally electronic equipments consists of impacts, sine and large power spectrum excitations. Under these real conditions and amongst different kinds of isolation, the passive damper with nonlinear parameters can provide good performances. This paper is concerned with the dynamic behavior of rigid bodies on highly nonlinear mounts. The numerical simulation and the experiment carried out, show that the load-deflection behavior of the dampers have to be slightly ajusted with respect to impact vibrations to obtain a well designed behavior.


1999 ◽  
Author(s):  
Sungsoo Na ◽  
Liviu Librescu

Abstract A study of the dynamical behavior of aircraft wings modeled as doubly-tapered thin-walled beams, made from advanced anisotropic composite materials, and incorporating a number of non-classical effects such as transverse shear, and warping inhibition is presented. The supplied numerical results illustrate the effects played by the taper ratio, anisotropy of constituent materials, transverse shear flexibility, and warping inhibition on free vibration and dynamic response to time-dependent external excitations. Although considered for aircraft wings, this analysis and results can be also applied to a large number of structures such as helicopter blades, robotic manipulator arms, space booms, tall cantilever chimneys, etc.


Author(s):  
Yingdan Wu ◽  
Michael Varenberg ◽  
Michael J. Leamy

We study the dynamic behavior of a belt-drive system to explore the effect of operating conditions and system moment of inertia on the generation of waves of detachment (i.e., Schallamach waves) at the belt-pulley interface. A self-excitation phenomenon is reported in which frictional fluctuations serve as harmonic forcing of the pulley, leading to angular velocity oscillations which grow in time. This behavior depends strongly on operating conditions (torque transmitted and pulley speed) and system inertia, and differs between the driver and driven pulleys. A larger net torque applied to the pulley generally yields more remarkable stick-slip oscillations with higher amplitude and lower frequency. Higher driving speeds accelerate the occurrence of stick-slip motion, but have little influence on the oscillation amplitude. Contrary to our expectations, the introduction of flywheels to increase system inertia amplified the frictional disturbances, and hence the pulley oscillations. This does, however, suggest a way of facilitating their study, which may be useful in follow-on research.


2013 ◽  
Vol 837 ◽  
pp. 88-92
Author(s):  
Jan Cristian Grigore

In kinematic couplings, clearances are inevitable for their operation. The size of these clearances but as a consequence of use, causes a malfunction of the mechanism to which it belongs. The law of motion of driveline changes, big clearances, non-technological system causes vibration, leading to discomfort, uncertainty, and thus reach its degradation. In the paper we shall make a few of geometric and mechanical type considerations about the clearances in the linkages, linkages planes with joint rotation links. Based on mathematical algorithm developed and applied crank mechanism, the model presented in [1], this paper scientifically developed mathematical model, proposing mathematical models to study the influence of the size of the clearance in general dynamic calculation mechanisms. Mechanism considered is crank connecting rod mechanism with clearance cinematic coupling between rod and crank rotation. The paper makes a study of the influence on the dynamic behavior of the crank rod mechanism at high speeds, but also general method algorithm is developed and accurate method to assess the dynamic behavior of multi-body mechanism. The first case is considered a constant angular speed motor and thus determine the elemental expressions that establish the mechanism position, velocity and acceleration expressions in the two directions heads elements. Finally we obtain the expression of the normal reaction force, as well as position expression that defines its angle. With reaction force can specify phase (contact, flight, impact) [1], the behavior of the journal. For the case of general method - the method multi-body - the exact method are established liaison relationships between the parameters , write matrices , inertia matrix. Use Lagrange equations, if non-holonomic constraints. Matrix differential equation of motion is written and it can be solved numerically using Runge-Kutta method of order four. Of the iterative method, we obtain the parameters used in calculating the reaction force expression that can be evaluated accurately in journal bearings behaviour. Any would be their source of appearance, they usually produce unwished effects during the mechanisms functioning.


2012 ◽  
Vol 197 ◽  
pp. 179-184
Author(s):  
Li Xing Sun ◽  
Ge Qun Shu

In the multibody dynamics analysis for motor vehicle, engine excitation, as a major excitation affecting the dynamic behavior of motorcycle frame, should be discussed. In this paper, a real-sized virtual engine model is established to replace lumped mass sphere ever discussed in dynamic simulation of vehicle, on which elaborate dynamic simulation of the valve train in engine is conducted at working condition to investigate the dynamic response of frame. The vertical acceleration response of the frame is achieved by using solution formulations set in professional program, and the comparison is discussed between different simulation results of frame dynamic behavior with or without engine excitation to determine the significance of dynamic simulation with considering the interaction between excitation and mechanism which is then utilized to discuss the vibration and smoothness performance of whole mechanical system.


Author(s):  
Hongwei Wang ◽  
Zizhao Zhang ◽  
Gang Ma ◽  
Rongtai Ma ◽  
Jie Yang

Abstract Select the common mooring system-soft yoke mooring system as the research object. The soft yoke mooring system is regarded as a structure composed of multiple rigid bodies, and the theoretical analysis of multi-body dynamics is used to discuss the interaction of multi-rigid bodies. The classical HYSY113 FPSO is selected as an example, for the soft yoke mooring system, the stiffness characteristics and static restoring force curved compared with those of software OrcaFlex, and they are in good agreement, which verify the reliability of the formula derived, and it is a prerequisite for the accurate simulations in further steps. Coupled analysis to the whole system in time domain is also carried out both in OrcaFlex and AQWA, and the representative response of the FPSO under different environmental conditions is compared, the results are consistent well with each other. It is a good reference for the future study in this field. Good static characteristics are a prerequisite for accurate analysis of time-domain motion. By comparing the results in the time domain, it is found that under the same working conditions, the analysis results calculated by different commercial software (AQWA and OrcaFlex) may be different. We need to perform design analysis based on the characteristics of the software.


Sign in / Sign up

Export Citation Format

Share Document