scholarly journals Numerical Study of Circular Concrete Filled Steel Tubes Subjected to Pure Torsion

Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 397
Author(s):  
Khanh Ba Le ◽  
Vui Van Cao

This study numerically explored the torsional behavior of circular concrete-filled steel tubes (CFST) under pure torsion. Numerical models of CFSTs were developed in ABAQUS. The models were validated by comparing with the experimental results available in the literature; then, these models were used for parametric study. Based on the obtained results, the mechanism of torsional moment transferring from steel plates to CFST was presented. The results obtained from the parametric study indicated that the compressive strength of concrete marginally improved the torsional moment capacity of the CFST while concrete prevented buckling and helped the steel tubes to work more effectively. The steel strength significantly affected the torsional moment capacity of the CFST. When the yield strength of steel increased from 235 to 420 MPa, the yield torsional moment of the CFST increased by approximately 50%. The yield torsional moment capacity of the steel tube had the strongest correlation with the yield moment of the CFST, followed by the ratio of diameter to thickness of the steel tube while the parameters related to the compressive strength of concrete exhibited a poor correlation with the yield torsional moment.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Hyung-Suk Jung ◽  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Joo-Hong Chung ◽  
Chang-Sik Choi ◽  
...  

This study was conducted to evaluate the applicability of concrete-filled steel tube (CFT) columns made from high-performance construction materials. KBC2016, South Korea’s current building code, limits the maximum compressive strength of concrete at 70 MPa and the maximum yield strength of steel at 650 MPa. Similar restrictions to material properties are imposed on major composite structural design parameters in other countries worldwide. With the recent acceleration of the pace of development in the field of material technology, the compressive strength of commercial concrete has been greatly improved and the problem of low tensile strength, known to be the major limitation of concrete, is being successfully addressed by adding fiber reinforcement to concrete. Therefore, the focus of this study was to experimentally determine the strength and ductility enhancement effects, which depend on material composition. To this end, we performed concentric axial loading tests on CFT stub columns made from steel with a yield strength of 800 MPa and steel fiber-reinforced high-strength concrete. By measuring the strain at the yield point of CFT steel during the test, we could determine whether steel yields earlier than ultimate failure load of the member, which is a key design concept of composite structures. The analysis results revealed that the yield point of steel preceded that of concrete on the stress-strain curve by the concurrent action of the strain increase at the maximum strength, attributable to the high compressive strength and steel fiber reinforcement, and the strain increase induced by the confining stress of the steel tube. Additionally, we performed parametric study using ABAQUS to establish the broad applications of CFT using high-performance materials, with the width-to-thickness ratio as the main parameter. Parametric study was undertaken as experimental investigation was not feasible, and we reviewed the criteria for limiting the width-to-thickness ratio as specified in the current building code.


2020 ◽  
pp. 93-98
Author(s):  
Viktar V. Tur ◽  
Radoslaw Duda ◽  
Dina Khmaruk ◽  
Viktar Basav

In this paper, a modified strains development model (MSDM) for expansive concrete-filled steel tube (ECFST) was formulated and verified on the experimental data, obtained from testing specimens on the expansion stage. The modified strain development model for restraint strains and self-stresses values estimation in concrete with high expansion energy capacity under any type of the symmetrical and unsymmetrical finite stiffness restraint conditions was proposed. Based on proposed MSDM a new model for expansive concrete-filled steel tubes is developed. The main difference between this model and other previously developed models consists in taking into account in the basic equations an induced force in restrain that is considered as an external load applied to the concrete core of the member. For verification of the proposed model-specific experimental studies were performed. As follows from comparison results restrained expansion strains values calculated following the proposed model shows good compliance with experimental data. The values predicted by the proposed MSDM for concrete-filled steel and obtained experimental data demonstrated good agreement that confirms the validity of the former.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Yijie Huang ◽  
Yuedong Sun ◽  
Huangsheng Sun ◽  
Qing Wang

A new mechanical model for analysing the behaviour of axially loaded recycled aggregate concrete filled steel tubes (RACFSTs) stub columns is presented in this study. The model is derived from the typical elastoplasticity, the nonlinear elastic mechanics, and the properties of materials. Based on the mechanical model, a novel numerical program is developed. The mechanical model and the numerical program are adopted to study the effect of recycled coarse aggregate (RCA) replacement percentage on RACFST mechanical behaviour. The complete load-deformation relationship of specimens, the steel tube axial and circumferential stresses, and the performance of the confined core concrete and the variation of interaction are also investigated. The analytical results indicate that this model is able to capture the mechanical behaviour of RACFST. It is also found that the axial and circumferential stresses of steel tube change nonlinearly during the loading stages. It is concluded that the behaviour of the confined core concrete is significantly influenced by the confining pressure. The steel tube confinement could improve the mechanical behaviour of RAC effectively and the RCA replacement percentage slightly changes the response of core concrete. Finally, the relations between confined core concrete and confining pressure are analysed.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1046 ◽  
Author(s):  
Rongling Zhang ◽  
Lina Ma ◽  
Qicai Wang ◽  
Jia Li ◽  
Yu Wang ◽  
...  

To study different lateral restraints, different constituents of expansion agents, the influence of different steel ratios, and concrete creep properties, we carried out experiments with lateral restraint and without lateral restraint conditions separately on 12 specimens with the expansion agent content accounting for 4%, 8%, and 12% respectively. In addition, the creep tests were performed on specimens with different steel ratios of 0.0%, 3.8%, 6.6%, and 9.2%. The test results show that the lateral restraint improves the strength of the system (concrete-filled steel tubes) which resists further load after the concrete ultimate strength is surpassed and reduces the creep. The creep degree of the concrete-filled steel tube with lateral restraint is about 0.09–0.30 times smaller than that of the tube without lateral restraints. The creep degree of the concrete-filled steel tube increases as the steel ratio decreases. Creep tests with different amounts of expansion agent indicate that the creep degree of the concrete structure increases as expansion agent content decreases. To study the internal mechanism of the creep of concrete-filled steel tubes with different lateral restraints and different expansion agent concentrations, a microscopic pore structure test on the steel core concrete was conducted using the RapidAir457 pore structure instrument. Microscopic studies show that the air content and the length of the bubble chord of the laterally restrained core concrete are lower than those without lateral restraint core concrete. The amount of air content and the length of the bubble chord of core concrete specimens increase as the expansion agent content in the core concrete specimens decreases from 12% to 4%. Under the same external loading conditions, as steel ratio increases, the lateral restraint causes a further reduction of creep. The results of this study suggest that the creep of concrete can be reduced by selecting appropriate lateral restraint conditions and an optimal amount of expansion agent in the mix design of concrete for concrete-filled steel tubes.


2011 ◽  
Vol 121-126 ◽  
pp. 3025-3029
Author(s):  
Hui Li ◽  
Jun Deng ◽  
Jun Hong Lin

Since the expansion of the cement during curing was constraint by the steel tube, the concrete core in the self-stressing concrete-filled steel tubes (SSCFST) is under tri-axially compression before applying load, which increases the axial capacity of the SSCFST. In addition, Carbon fiber reinforced polymer (CFRP) wrapping can avoid bucking of the steel tube, increase the axial capacity and improve the durability of SSCFST. This study presents a theoretical study on axial capacity of the SSCFST wrapped with CFRP sheets. Several basic assumptions are proposed. The ultimate equilibrium method was employed to analyze the axial capacity, of which two limit states, including steel tube bucking and CFRP sheets rupturing were considered. The analytical results from an example show that the initial self-stress improves axial capacity of the SSCFST by about 30% and the CFRP reinforcement improves axial capacity by about 15%.


Author(s):  
Farhad Behnamfar ◽  
Hadi Rafizadeh ◽  
Mortza Omidi

This research work presents new details for moment connections in precast concrete structures satisfying both design and practice criteria. In this paper the results of the numerical study on the connections are presented. For the analysis, the ANSYS software is selected because of its diversity in nonlinear analysis. By calculating the monotonic load-displacement curve of each connection, the connections are evaluated for their stiffness, strength, and ductility. The compressive strength of the connection concrete is taken to be 30, 35 and 40 MPa, for each round of analysis. The results of the analysis show that the proposed connections are stiff enough to be moment resisting and to be emulating an equivalent monolithic, or basic connection. It is illustrated that the connections are stronger but somewhat less ductile than the basic connection regardless of the concrete strengths examined. Moreover, it is shown that in each precast connection while increasing the compressive strength of concrete does not affect the connection stiffness considerably, it increases the ultimate load and ductility of the connection. As a main result of this study, the suggested connection details are categorized based on their stiffness, strength, and ductility. The suggested connections can be used in moment resisting precast concrete buildings based on the desired strength and ductility.


2017 ◽  
Vol 21 (10) ◽  
pp. 1542-1552 ◽  
Author(s):  
Shiming Chen ◽  
Junming Jiang ◽  
Liangjiu Jia

An innovative beam-to-column composite joint with adapter-bracket was proposed and its behavior was investigated through finite element analysis. The special adapter-bracket is to facilitate the assembly of the steel box beam and the concrete-filled steel tube column through high-strength blind bolts. In the adapter-bracket, two endplates are welded to the beam and bolted to the column, respectively. First, two finite element models of the bolted extended endplate joint were developed in ABAQUS and validated by available experimental results. Then, based on modified models, parametric analyses were conducted to evaluate the novel joint performance, in terms of the initial stiffness, rotation capacity, moment capacity, failure mode, and joint classification. The variables included flange thickness, endplate thickness, and bolt size. Results demonstrated that the joint behavior was significantly affected by the flange thickness, the endplate-A thickness, and bolt size while slightly influenced by the endplate-B thickness. Additionally, these joints had favorable rotation and moment capacity.


2010 ◽  
Vol 163-167 ◽  
pp. 3826-3829
Author(s):  
Feng Yu ◽  
Ping Wu

FRP-confined concrete filled steel tube may fully use the character of FRP-confined concrete and concrete filled steel tube. Based on the analysis of existing experimental data, the formula of ultimate bearing capacity of FRP-confined concrete filled steel tube is proposed. The mechanical behavior of FRP-confined concrete filled steel tube is mainly related to the equivalent confinement effect coefficient before the rupture of FRP. Based on the static equilibrium condition, the equivalent conversion section is adopted; taking as main parameter, the simplified stress-strain model of FRP-confined concrete filled steel tube is established. The predictions of the model agree well with test data.


2013 ◽  
Vol 405-408 ◽  
pp. 2534-2537 ◽  
Author(s):  
Yuan Yuan Wu ◽  
Yuan Peng ◽  
Yong Dao Liu ◽  
Li Li Jia

The expansion of cement mortar mixing expansive agent under standard curing and membrane curing conditions and compressive strength in constrained conditions are studied in this paper. Results show that the early expansion effect of calcium sulphoaluminate hydrate-calcium hydroxide expansive agent is obvious, mid-to late effect of magnesia expansive agent increase clearly. Compare with standard curing, the shrinkage of the basic cement mortar increase and expansion effect of expansive agent reduce under membrane curing. The expansion effect of expansive agent B is good and persistent under membrane curing, its applicable to used in the closed environment, such as concrete filled steel tubes. The compressive strength of mortar with expansion agent is a little more than the basic mortar under the condition of limit.


Sign in / Sign up

Export Citation Format

Share Document