scholarly journals The Brain Penetrating and Dual TORC1/TORC2 Inhibitor, RES529, Elicits Anti-Glioma Activity and Enhances the Therapeutic Effects of Anti-Angiogenetic Compounds in Preclinical Murine Models

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1604 ◽  
Author(s):  
Giovanni Luca Gravina ◽  
Andrea Mancini ◽  
Alessandro Colapietro ◽  
Simona Delle Monache ◽  
Roberta Sferra ◽  
...  

Background. Glioblastoma multiforme (GBM) is a devastating disease showing a very poor prognosis. New therapeutic approaches are needed to improve survival and quality of life. GBM is a highly vascularized tumor and as such, chemotherapy and anti-angiogenic drugs have been combined for treatment. However, as treatment-induced resistance often develops, our goal was to identify and treat pathways involved in resistance to treatment to optimize the treatment strategies. Anti-angiogenetic compounds tested in preclinical and clinical settings demonstrated recurrence associated to secondary activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway. Aims. Here, we determined the sensitizing effects of the small molecule and oral available dual TORC1/TORC2 dissociative inhibitor, RES529, alone or in combination with the anti-VEGF blocking antibody, bevacizumab, or the tyrosine kinase inhibitor, sunitinib, in human GBM models. Results. We observed that RES529 effectively inhibited dose-dependently the growth of GBM cells in vitro counteracting the insurgence of recurrence after bevacizumab or sunitinib administration in vivo. Combination strategies were associated with reduced tumor progression as indicated by the analysis of Time to Tumor Progression (TTP) and disease-free survival (DSF) as well as increased overall survival (OS) of tumor bearing mice. RES529 was able to reduce the in vitro migration of tumor cells and tubule formation from both brain-derived endothelial cells (angiogenesis) and tumor cells (vasculogenic mimicry). Conclusions. In summary, RES529, the first dual TORC1/TORC2 dissociative inhibitor, lacking affinity for ABCB1/ABCG2 and having good brain penetration, was active in GBM preclinical/murine models giving credence to its use in clinical trial for patients with GBM treated in association with anti-angiogenetic compounds.

2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Shuang Cui ◽  
Qiong Wu ◽  
Ming Liu ◽  
Mu Su ◽  
ShiYou Liu ◽  
...  

AbstractSuper-enhancers or stretch enhancers (SEs) consist of large clusters of active transcription enhancers which promote the expression of critical genes that define cell identity during development and disease. However, the role of many super-enhancers in tumor cells remains unclear. This study aims to explore the function and mechanism of a new super-enhancer in various tumor cells. A new super-enhancer that exists in a variety of tumors named EphA2-Super-enhancer (EphA2-SE) was found using multiple databases and further identified. CRISPR/Cas9-mediated deletion of EphA2-SE results in the significant downregulation of its target gene EphA2. Mechanistically, we revealed that the core active region of EphA2-SE comprises E1 component enhancer, which recruits TCF7L2 and FOSL2 transcription factors to drive the expression of EphA2, induce cell proliferation and metastasis. Bioinformatics analysis of RNA-seq data and functional experiments in vitro illustrated that EphA2-SE deletion inhibited cell growth and metastasis by blocking PI3K/AKT and Wnt/β-catenin pathway in HeLa, HCT-116 and MCF-7 cells. Overexpression of EphA2 in EphA2-SE−/− clones rescued the effect of EphA2-SE deletion on proliferation and metastasis. Subsequent xenograft animal model revealed that EphA2-SE deletion suppressed tumor proliferation and survival in vivo. Taken together, these findings demonstrate that EphA2-SE plays an oncogenic role and promotes tumor progression in various tumors by recruiting FOSL2 and TCF7L2 to drive the expression of oncogene EphA2.


Author(s):  
Atsuhito Uneda ◽  
Kazuhiko Kurozumi ◽  
Atsushi Fujimura ◽  
Kentaro Fujii ◽  
Joji Ishida ◽  
...  

AbstractGlioblastoma (GBM) is the most lethal primary brain tumor characterized by significant cellular heterogeneity, namely tumor cells, including GBM stem-like cells (GSCs) and differentiated GBM cells (DGCs), and non-tumor cells such as endothelial cells, vascular pericytes, macrophages, and other types of immune cells. GSCs are essential to drive tumor progression, whereas the biological roles of DGCs are largely unknown. In this study, we focused on the roles of DGCs in the tumor microenvironment. To this end, we extracted DGC-specific signature genes from transcriptomic profiles of matched pairs of in vitro GSC and DGC models. By evaluating the DGC signature using single cell data, we confirmed the presence of cell subpopulations emulated by in vitro culture models within a primary tumor. The DGC signature was correlated with the mesenchymal subtype and a poor prognosis in large GBM cohorts such as The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project. In silico signaling pathway analysis suggested a role of DGCs in macrophage infiltration. Consistent with in silico findings, in vitro DGC models promoted macrophage migration. In vivo, coimplantation of DGCs and GSCs reduced the survival of tumor xenograft-bearing mice and increased macrophage infiltration into tumor tissue compared with transplantation of GSCs alone. DGCs exhibited a significant increase in YAP/TAZ/TEAD activity compared with GSCs. CCN1, a transcriptional target of YAP/TAZ, was selected from the DGC signature as a candidate secreted protein involved in macrophage recruitment. In fact, CCN1 was secreted abundantly from DGCs, but not GSCs. DGCs promoted macrophage migration in vitro and macrophage infiltration into tumor tissue in vivo through secretion of CCN1. Collectively, these results demonstrate that DGCs contribute to GSC-dependent tumor progression by shaping a mesenchymal microenvironment via CCN1-mediated macrophage infiltration. This study provides new insight into the complex GBM microenvironment consisting of heterogeneous cells.


2020 ◽  
Author(s):  
TT Cooper ◽  
SE Sherman ◽  
T Dayarathna ◽  
GI Bell ◽  
Jun Ma ◽  
...  

AbstractThe release of extracellular vesicles (EVs) from human multipotent stromal cells (MSC) has been proposed as a mechanism by which MSC mediate regenerative functions in vivo. Our recent work has characterized MSC derived from human pancreatic tissues (Panc-MSC) that generated a tissue regenerative secretome. Despite these advancements, it remains unknown whether regenerative stimuli are released independent or within extracellular vesicles. Herein, this study demonstrates ultrafiltration is a simple method to enrich for EVs which can be injected in murine models of tissue regeneration. The enrichment of EVs from Panc-MSC conditioned media (CM) was validated using nanoscale flow cytometry and atomic force microscopy; in addition to the exclusive detection of classical EV-markers CD9, CD81, CD63 using label-free mass spectrometry. Additionally, we identified several pro-regenerative stimuli, such as WNT5A or ANGPT1, exclusive to EV-enriched CM. Endothelial cell tubule formation was enhanced in response to both Panc-MSC CM fractions in vitro yet only intramuscular injection of EV-enriched CM demonstrated vascular regenerative functions in NOD/SCID mice with unilateral hind-limb ischemia (*<p<0.05). Furthermore, both EV-depleted and EV-enriched CM reduced hyperglycemia following intrapancreatic injection in hyperglycemic mice (**p<0.01). Collectively, understanding the functional synergy between compartments of the secretome is required to advance cell-free biotherapeutics into applications of regenerative medicine.


Oncogenesis ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
José Manuel García-Heredia ◽  
Daniel Otero-Albiol ◽  
Marco Pérez ◽  
Elena Pérez-Castejón ◽  
Sandra Muñoz-Galván ◽  
...  

Abstract MAP17 (PDZK1IP1) is a small protein regulating inflammation and tumor progression, upregulated in a broad range of carcinomas. MAP17 levels increase during tumor progression in a large percentage of advanced tumors. In the present work, we explored the role of this protein shaping tumor evolution. Here we show that in breast cancer, cells increased MAP17 levels in tumors by demethylation induced multiple changes in gene expression through specific miRNAs downregulation. These miRNA changes are dependent on Notch pathway activation. As a consequence, epithelial mesenchymal transition (EMT) and stemness are induced promoting the metastatic potential of these cells both in vitro and in vivo. Furthermore, MAP17 increased the exosomes in tumor cells, where MAP17 was released as cargo, and this horizontal propagation also increased the EMT in the recipient cells. Importantly, an antibody against MAP17 in the media reduces the EMT and stemness alterations promoted by the conditioned media from MAP17-expressing cells. Therefore, MAP17 expression promotes the horizontal propagation of EMT and metastasis by transferring the MAP17 protein between subsets of neoplastic cells. Thus, MAP17 can be used to describe a new mechanism for cell malignity at distance, without the involvement of genetic or epigenetic modifications. MAP17 can also be taken in consideration as new target for metastatic high-grade breast tumors.


2015 ◽  
Vol 14 (7) ◽  
pp. 1582-1590 ◽  
Author(s):  
Yun Xia ◽  
Xian-Yi Cai ◽  
Ji-Quan Fan ◽  
Li-Ling Zhang ◽  
Jing-Hua Ren ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 6 (35) ◽  
pp. 37511-37525 ◽  
Author(s):  
Cristina Talarico ◽  
Lucia D’Antona ◽  
Domenica Scumaci ◽  
Agnese Barone ◽  
Francesco Gigliotti ◽  
...  

2021 ◽  
Vol 27 ◽  
Author(s):  
Vibha Rani ◽  
Dhananjay Yadav ◽  
Neha Atale

Background: Cancer is a wide range cellular level disease that occurs when cells go through uncontrolled division and growth. The mechanisms by which the cells undergo metastasis are complex and involve many interactions between the tumor cells and their cellular environment. Matrix metalloproteinases (MMPs) have been found to over-express at various stages of tumor progression and their inhibition using MMP inhibitors has been a subject of potential therapy against cancer. Objective: This review discusses recent research in MMP inhibitors (MMPI) used for preventing tumor progression. Methods: In this review, we explored the role of MMPs in cancer progression and summarized the current developments in MMPIs, their role in cancer suppression in in vitro and in vivo studies and their evaluation in clinical trials from the current research data. Results: MMPIs have shown to be very successful in in vitro models, cell lines and in some in vivo studies. Unfortunately, their efficacy in clinical trials has been found to be hit and miss. Recent studies have shown that the novel delivery approaches of MMP inhibitors may enhance their therapeutic effects towards the prevention of cancer. Conclusion: In this review, we presented different MMP inhibitors, their performance at different stages of models - in vitro, in vivo, small animal models and eventually clinical trials. We provide newer methods of MMPI delivery that may be better targeted to suppress only specific MMPs and avoid toxic side-effects in healthy cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3159-3159
Author(s):  
Ilyas Sahin ◽  
Feda Azab ◽  
Michele Moschetta ◽  
Yuji Mishima ◽  
Brian Tsang ◽  
...  

Abstract Background The phosphatidylinositol-3 kinase (PI3K) pathway is a critical regulator of tumor progression, protein translation and cytoskeletal dynamics, collectively required for cell proliferation, survival, adhesion and migration in many malignancies including multiple myeloma (MM). Despite the absence of mutations in the PI3K/Akt genes, many studies have demonstrated that this pathway is constitutively activated in MM cells. In this study, we investigated the role of inhibition of class I PI3K isoforms known as p110α, p110β, p110γ and p110δ in cell trafficking of MM cells using isoform-specific knockdown (KD). We have also evaluated the effect of pan-PI3K inhibitior, NVP-BKM120, on survival, adhesion and migration of MM cells both in vitro and in vivo. Methods The baseline expression of class I PI3K isoforms in MM cell lines (MM.1S, OPM1, OPM2, H929, RPMI, INA6, U266, and U266LR7) has been evaluated by immnunobloting. MM tumor cells (MM.1S-GFP+/luc+) were infected with lentivirus mediated shRNA targeting class I PI3K isoforms. RT-qPCR and immunoblotting were performed to show infection efficiency. In vivo tumor growth of isoform specific KDs were assessed by using in vivo bioluminescence (BLI) in SCID mice. Detection of circulating MM-GFP+ cells ex vivo was performed by flow cytometry. Analysis of circulating tumor cells for each isoform-specific KD cells against relative tumor volume was performed by lineer regression using GraphPad software. Survival, adhesion and migration of KD cells were tested by MTT, adhesion and migration in vitro assay, respectively. NVP-BKM120, a pan-PI3K-inhibitor (Novartis, MA) has been tested both in vitro and in vivo. Ex vivo detection of mobilization and tumor growth of MM cells (MM.1S-GFP+/luc+) treated with 1) vehicle; 2) NVP-BKM120 in SCID mice were assessed by using flow cytometry and in vivo BLI. Homing of MM cells to the BM of mice pre-treated with NVP-BKM120 was evaluated by in vivo confocal. Increased concentrations of NVP-BKM120 have been tested on survival, cell cycle and apoptotic pathways in MM cells, by using MTT, PI staining in flow cytometry and immunoblotting, respectively. NVP-BKM120 induced dose-dependent effect on chemotaxis and adhesion of MM.1s to BM stromal cells (BMSCs) and fibronectin were tested by migration and adhesion assays. Results PI3K-p110β was highly expressed in all cell lines; while other isoforms were expressed in some of the MM cell lines tested. Of note, MM.1S expressed all isoforms. Mice injected with PI3K isoform specific knockdown MM.1S cells presented with different tumor burdens; p110β and p110δ mice showed significantly slower tumor progression compared to scramble control cell line (P<.05), whereas tumor growth was similar in p110α and p110γ to control mice. We next compared the number of circulating tumor cells (CTCs) at the same tumor burden between groups, which showed only p110β presented with a higher number of CTCs compared to the scramble group (P=0.01). In vitro, we observed reduced adhesion and enhanced migration of KD cells compared to control with no cell survival difference. The effect of pan-inhibition of PI3K with NVP-BKM120 induced MM cell mobilization from the BM to the circulation (Vehicle: 0.002 % vs NVP-BKM120: 0.023%; P<.05). This was supported by the inhibition of homing of MM cells to the BM (84% decrease) in the mice pre-treated with NVP-BKM120 (P<.05). Furthermore, treatment of mice with 50mg/kg of NVP-BKM120 once a day by oral gavage for five weeks significantly decreased the rate of tumor progression in MM compared to the vehicle treated group, as shown by BLI (69% decrease, P<.01). NVP-BKM120 decreased the activation of adhesion-related signaling in MM cells induced by co-culture with stroma, including pFAK, pSrc, pCoffilin and pMLC, as shown by immunoblotting. Moreover, it caused cell cycle arrest, as detected by PI staining and analyzed by flow cytometry. Conclusion This study suggests that inhibition of Class I PI3K isoforms, particularly p110β and p110δ, can play an important role in the regulation of cell trafficking in MM by disrupting adhesion of MM cells to the BM and inducing mobilization. Thus, pan-PI3K inhibition by NVP-BKM120 is a promising approach, which may enhance therapeutic response and overcome resistance in the treatment of MM. Disclosures: Ghobrial: Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258599
Author(s):  
Elnaz Abbasifarid ◽  
Azam Bolhassani ◽  
Shiva Irani ◽  
Fattah Sotoodehnejadnematalahi

Cervical cancer is the most common malignant tumor in females worldwide. Human papillomavirus (HPV) infection is associated with the occurrence of cervical cancer. Thus, developing an effective and low-cost vaccine against HPV infection, especially in developing countries is an important issue. In this study, a novel HPV L1-E7 fusion multiepitope construct designed by immunoinformatics tools was expressed in bacterial system. HEK-293T cells-derived exosomes were generated and characterized to use as a carrier for crocin and curcumin compounds. The exosomes loaded with crocin and curcumin compounds as a chemotherapeutic agent (ExoCrocin and ExoCurcumin) were used along with the L1-E7 polypeptide for evaluation of immunological and anti-tumor effects in C57BL/6 mouse model. In vitro studies showed that ExoCrocin and ExoCurcumin were not cytotoxic at a certain dose, and they could enter tumor cells. In vivo studies indicated that combination of the L1-E7 polypeptide with ExoCrocin or ExoCurcumin could produce a significant level of immunity directed toward Th1 response and CTL activity. These regimens showed the protective and therapeutic effects against tumor cells (the percentage of tumor-free mice: ~100%). In addition, both ExoCrocin and ExoCurcumin represented similar immunological and anti-tumor effects. Generally, the use of exosomal crocin or curcumin forms along with the L1-E7 polypeptide could significantly induce T-cell immune responses and eradicate tumor cells.


Sign in / Sign up

Export Citation Format

Share Document