scholarly journals Beyond the Paclitaxel and Vinca Alkaloids: Next Generation of Plant-Derived Microtubule-Targeting Agents with Potential Anticancer Activity

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1721 ◽  
Author(s):  
Dangquan Zhang ◽  
Arun Kanakkanthara

Plants are an important source of chemically diverse natural products that target microtubules, one of the most successful targets in cancer therapy. Colchicine, paclitaxel, and vinca alkaloids are the earliest plant-derived microtubule-targeting agents (MTAs), and paclitaxel and vinca alkaloids are currently important drugs used in the treatment of cancer. Several additional plant-derived compounds that act on microtubules with improved anticancer activity are at varying stages of development. Here, we move beyond the well-discussed paclitaxel and vinca alkaloids to present other promising plant-derived MTAs with potential for development as anticancer agents. Various biological and biochemical aspects are discussed. We hope that the review will provide guidance for further exploration and identification of more effective, novel MTAs derived from plant sources.

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1268
Author(s):  
Malgorzata Dobrzynska ◽  
Marta Napierala ◽  
Ewa Florek

Flavonoids, a ubiquitous group of naturally occurring polyphenolic compounds, have recently gained importance as anticancer agents. Unfortunately, due to low solubility, absorption, and rapid metabolism of dietary flavonoids, their anticancer potential is not sufficient. Nanocarriers can improve the bioavailability of flavonoids. In this review we aimed to evaluate studies on the anticancer activity of flavonoid nanoparticles. A review of English language articles published until 30 June 2020 was conducted, using PubMed (including MEDLINE), CINAHL Plus, Cochrane, and Web of Science data. Most studies determining the anticancer properties of flavonoid nanoparticles are preclinical. The potential anticancer activity focuses mainly on MCF-7 breast cancer cells, A549 lung cancer cells, HepG2 liver cancer cells, and melanoma cells. The flavonoid nanoparticles can also support the anti-tumour effect of drugs used in cancer therapy by enhancing the anti-tumour effect or reducing the systemic toxicity of drugs.


2015 ◽  
Vol 1 (1) ◽  
pp. 20 ◽  
Author(s):  
Mardia T El-sayed ◽  
Nehal A Hamdy ◽  
Dalia A Osman ◽  
Khadiga M Ahmed

<p>Indoles are natural products well known for their anticancer activity, which is related to their ability to induce cell death for many cancer cell lines. This review addresses indoles as natural products, mechanism of indoles, facilitated induction and recent studies with indoles and related compounds that were investigated via anticancer screening and that led to drug approval.</p><p><strong> </strong></p><p><strong> </strong></p>


2018 ◽  
Vol 18 (3) ◽  
pp. 354-366 ◽  
Author(s):  
Ban-Feng Ruan ◽  
Wei-Wei Ge ◽  
Meng-Xue Lin ◽  
Qing-Shan Li

The marine natural products (MNPs) isolated from seaweeds-associated microbial communities have received substantial attention owing to their exceptional nutritional and pharmacology application, such as antiviral, anticancer, antiprotozoal, antifungal, and antibacterial properties and so on. Particularly, there are several MNPs that have been displayed attractive value for the development of novel anticancer agents. This review covers the literature published in the recent 5 years on the novel anticancer MNPs discovered originating from seaweeds, and focused on the chemistry and relative anticancer activities of new MNPs which categorize their source organisms. These seaweed-derived MNPs are categorized based on their origin as brown algae, red algae, cyanobacteria, chlorophyta and others.


2014 ◽  
Vol 11 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Unnati Shah ◽  
Ripal Shah ◽  
Sanjeev Acharya ◽  
Niyati Acharya

Author(s):  
Agnieszka Wróbel ◽  
Danuta Drozdowska

Background: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances on the research of new DHFR inhibitors with potential anticancer activity. Methods: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationship were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. <p> Results: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searching for over eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. <p> Conclusion: Thorough physicochemical characterization and biological investigations it is possible to understand structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.


2020 ◽  
Vol 20 (18) ◽  
pp. 1929-1941
Author(s):  
Heba A. Elhady ◽  
Hossa F. Al-Shareef

Background and Objective: Due to the well-documented anti-proliferative activity of 2-thiohydantoin incorporated with pyrazole, oxadiazole, quinazoline, urea, β-naphthyl carbamate and Schiff bases, they are noteworthy in pharmaceutical chemistry. Methods: An efficient approach for the synthesis of a novel series of 2-thiohydantoin derivatives incorporated with pyrazole and oxadiazole has proceeded via the reaction of the acyl hydrazide with chalcones and/or triethyl orthoformate. Schiff bases were synthesized by the reaction of the acyl hydrazide with different aromatic aldehydes. Moreover, Curtius rearrangement was applied to the acyl azide to obtain the urea derivative, quinazoline derivative, and carbamate derivative. Results: The synthesized compounds structures were discussed and confirmed depending on their spectral data. The anticancer activity of these heterocyclic compounds was evaluated against the breast cancer cell line (MCF-7), where they showed variable activity. Compound 5d found to have a superior anticancer activity, where it has (IC50 = 2.07 ± 0.13 μg/mL) in comparison with the reference drug doxorubicin that has (IC50 = 2.79 ± 0.07 μg / mL). Then compound 5d subjected to further studies such as cell cycle analysis and apoptosis. Apoptosis was confirmed by the upregulation of Bax, downregulation of Bcl-2, and the increase of the caspase 3/7percentage. Conclusion: Insertion of pyrazole, oxadiazole and, quinazoline moieties with 2-thiohydantoin moiety led to the enhancement of its anti-proliferative activity. Hence they can be used as anticancer agents.


2020 ◽  
Vol 17 (10) ◽  
pp. 772-778
Author(s):  
Abdulrhman Alsayari ◽  
Abdullatif Bin Muhsinah ◽  
Yahya I. Asiri ◽  
Jaber Abdullah Alshehri ◽  
Yahia N. Mabkhot ◽  
...  

The aim of this study was to synthesize and evaluate the biological activity of pyrazole derivatives, in particular, to perform a “greener” one-pot synthesis using a solvent-free method as an alternative strategy for synthesizing hydrazono/diazenyl-pyridine-pyrazole hybrid molecules with potential anticancer activity. Effective treatment for all types of cancers is still a long way in the future due to the severe adverse drug reactions and drug resistance associated with current drugs. Therefore, there is a pressing need to develop safer and more effective anticancer agents. In this context, some hybrid analogues containing the bioactive pharmacophores viz. pyrazole, pyridine, and diazo scaffolds were synthesized by one-pot method. Herein, we describe the expedient synthesis of pyrazoles by a onepot three-component condensation of ethyl acetoacetate/acetylacetone, isoniazid, and arenediazonium salts under solvent-free conditions, and the evaluation of their cytotoxicity using a sulforhodamine B assay on three cancer cell lines. Molecular docking studies employing tyrosine kinase were also carried out to evaluate the binding mode of the pyrazole derivatives under study. 1-(4-Pyridinylcarbonyl)-3- methyl-4-(2-arylhydrazono)-2-pyrazolin-5-ones and [4-(2-aryldiazenyl)-3,5-dimethyl-1H-pyrazol-1- yl]-4-pyridinylmethanones, previously described, were prepared using an improved procedure. Among these ten products, 1-isonicotinoyl-3-methyl-4-[2-(4-nitrophenyl)hydrazono]-2-pyrazolin-5-one (1f) displayed promising anticancer activity against the MCF-7, HepG2 and HCT-116 cell lines, with an IC50 value in the range of 0.2-3.4 μM. In summary, our findings suggest that pyrazoles containing hydrazono/ diazenyl and pyridine pharmacophores constitute promising scaffolds for the development of new anticancer agents.


2019 ◽  
Vol 15 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Paritosh Shukla ◽  
Ashok Sharma ◽  
Leena Fageria ◽  
Rajdeep Chowdhury

Background: Cancer being a deadly disease, many reports of new chemical entities are available. Pyranopyrazole (PPZ) compounds have also been disclosed as bioactive molecules but mainly as antimicrobial agents. Based on one previous report and our interest in anticancer drug design, we decided to explore PPZs as anticancer agents. To the best of our knowledge, we found that a comprehensive study, involving synthesis, in-vitro biological activity determination, exploration of the mechanism of inhibition and finally in-silico docking studies, was missing in earlier reports. This is what the present study intends to accomplish. Methods: Ten spiro and eleven non-spiro PPZ molecules were synthesized by environment-friendly multicomponent reaction (MCR) strategy. After subjecting each of the newly synthesized molecules to Hep3b hepatocellular carcinoma cell lines assay, we selectively measured the Optical Density (OD) of the most active ones. Then, the compound exhibiting the best activity was docked against human CHK- 1 protein to get an insight into the binding affinities and a quick structure activity relationship (SAR) of the PPZs. Results: The two series of spiro and non-spiro PPZs were easily synthesized in high yields using microwave assisted synthesis and other methods. Among the synthesized compounds, most compounds showed moderate to good anticancer activity against the MTT assay. After performing the absorbance studies we found that the non-spiro molecules showed better apoptosis results and appeared to bind to DNA causing disruption in their structures. Finally, the docking results of compound 5h (having N,Ndimethylamino substituted moiety) clearly showed good binding affinities as predicted by our experimental findings. Conclusion: The paper describes a comprehensive synthesis, in-vitro and docking studies done on new PPZs. The newly synthesized series of spiro and non-spiro PPZs were found to possess antineoplasmic activity as evinced by the studies on hep3b cells. Also, the UV visible absorbance study gave clues to the possible binding of these molecules to the DNA. Docking studies corroborated well with the experimental results. Thus, these new molecules appear to be potential anticancer agents, but further studies are required to substantiate and elaborate on these findings.


2020 ◽  
Vol 16 ◽  
Author(s):  
Pelin Telkoparan-Akillilar ◽  
Dilek Cevik

Background: Numerous sequencing techniques have been progressed since the 1960s with the rapid development of molecular biology studies focusing on DNA and RNA. Methods: a great number of articles, book chapters, websites are reviewed, and the studies covering NGS history, technology and applications to cancer therapy are included in the present article. Results: High throughput next-generation sequencing (NGS) technologies offer many advantages over classical Sanger sequencing with decreasing cost per base and increasing sequencing efficiency. NGS technologies are combined with bioinformatics software to sequence genomes to be used in diagnostics, transcriptomics, epidemiologic and clinical trials in biomedical sciences. The NGS technology has also been successfully used in drug discovery for the treatment of different cancer types. Conclusion: This review focuses on current and potential applications of NGS in various stages of drug discovery process, from target identification through to personalized medicine.


2014 ◽  
Vol 8 (3) ◽  
pp. 189-196 ◽  
Author(s):  
Verma Nitika ◽  
Khatri Kapil

Sign in / Sign up

Export Citation Format

Share Document