scholarly journals TERT Promoter Mutation as an Independent Prognostic Marker for Poor Prognosis MAPK Inhibitors-Treated Melanoma

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2224
Author(s):  
Pauline Blateau ◽  
Etienne Coyaud ◽  
Estelle Laurent ◽  
Benoit Béganton ◽  
Vincent Ducros ◽  
...  

Although the development of mitogen-activated protein kinase (MAPK) inhibitors has greatly improved the prognosis of BRAFV600 cutaneous melanomas, the identification of molecular indicators for mutated patients at risk of early progression remains a major issue. Using an amplicon-based next-generation-sequencing (NGS) assay that targets cancer-related genes, we investigated co-occurring alterations in 89 melanoma samples. We analyzed both their association with clinicopathological variables and clinical significance in terms of progression-free survival (PFS) and overall survival (OS) according to BRAF genotyping. Among co-occurring mutations, TERT promoter was the most frequently mutated gene. Although no significant difference in PFS was observed in the presence or absence of co-occurring alterations to BRAFV600, there was a trend of longer PFS for patients harboring TERT c.-124C>T mutation. Of most interest, this mutation is an independent marker of good prognosis in subgroups of patients with poor prognosis (presence of brain metastasis and elevated level of lactate dehydrogenase, LDH). Moreover, combination of elevated LDH level, presence of brain metastasis, and TERT c.-124C>T mutation was identified as the best fit model for predicting clinical outcome. Our work revealed the potential interest of c.-124C>T status determination in order to refine the prognosis of BRAFV600 melanoma under mitogen-activated protein kinase (MAPK) inhibitors.

2019 ◽  
Vol 12 ◽  
pp. 117863611986459 ◽  
Author(s):  
Jessica Gräb ◽  
Jan Rybniker

The p38 mitogen-activated protein kinase (MAPK) is involved in a multitude of essential cellular processes. The kinase is activated in response to environmental stresses, including bacterial infections and inflammation, to regulate the immune response of the host. However, recent studies have demonstrated that pathogens can manipulate p38 MAPK signaling for their own benefit to either prevent or induce host cell apoptosis. In addition, there is evidence demonstrating that p38 MAPK is a potent trigger of pathogen-induced necrosis driven by mitochondrial membrane disruption. Given the large number of p38 MAPK inhibitors that have been tested in clinical trials, these findings provide an opportunity to repurpose these drugs for improved control of infectious diseases.


2019 ◽  
pp. 1-10 ◽  
Author(s):  
Renáta Váraljai ◽  
Kilian Wistuba-Hamprecht ◽  
Teofila Seremet ◽  
Joey Mark S. Diaz ◽  
Jérémie Nsengimana ◽  
...  

PURPOSE Circulating cell-free tumor DNA (ctDNA) reflects the heterogeneous spectrum of tumor-specific mutations, especially in systemic disease. We validated plasma-based assays that allow the dynamic quantitative detection of ctDNA as a prognostic biomarker for tumor load and prediction of therapy response in melanoma. MATERIALS and METHODS We analyzed plasma-derived ctDNA from a large training cohort (n = 96) of patients with advanced-stage melanoma, with assays for the BRAFV600E and NRASQ61 driver mutations as well as TERTC250T and TERTC228T promoter mutations. An independent patient cohort (n = 35) was used to validate the utility of ctDNA monitoring under mitogen-activated protein kinase–targeted or immune checkpoint therapies. RESULTS Elevated plasma ctDNA level at baseline was an independent prognostic factor of disease progression when compared with serum S100 and lactate dehydrogenase levels in multivariable analyses (hazard ratio [HR], 7.43; 95% CI, 1.01 to 55.19; P = .05). The change in ctDNA levels during therapy correlated with treatment response, where increasing ctDNA was predictive for shorter progression-free survival (eg, for BRAFV600E ctDNA, HR, 3.70; 95% CI, 1.86 to 7.34; P < .001). Increasing ctDNA levels predicted disease progression significantly earlier than did routine radiologic scans ( P < .05), with a mean lead time of 3.5 months. NRAS-mutant ctDNA was detected in a significant proportion of patients with BRAF-mutant tumors under therapy, but unexpectedly also at baseline. In vitro sensitivity studies suggested that this represents higher-than-expected intratumoral heterogeneity. The detection of NRASQ61 ctDNA in baseline samples of patients with BRAFV600E mutation who were treated with mitogen-activated protein kinase inhibitors significantly correlated with shorter progression-free survival (HR, 3.18; 95% CI, 1.31 to 7.68; P = .03) and shorter overall survival (HR, 4.08; 95% CI, 1.57 to 10.58; P = .01). CONCLUSION Our results show the potential role of ctDNA measurement as a sensitive monitoring and prediction tool for the early assessment of disease progression and therapeutic response in patients with metastatic melanoma.


2014 ◽  
Vol 26 (1) ◽  
pp. 130
Author(s):  
N. Z. Saraiva ◽  
C. S. Oliveira ◽  
M. del Collado ◽  
M. R. de Lima ◽  
R. Vantini ◽  
...  

Chemical enucleation using microtubule-depolymerizing drugs is an attractive procedure to simplify the enucleation process in nuclear transfer. The aim of this study was to optimize chemically assisted (CA) and chemically induced (CI) enucleation protocols using metaphase II (MII) and pre-activated bovine oocytes, respectively, and to evaluate the activity of maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) in cytoplasts generated by these techniques. Initially, we determined the shortest effective treatment of MII and activated oocytes with 0.05 μg mL–1 demecolcine. Bovine oocytes in vitro matured (IVM) for 19 h (MII) or activated artificially with 5 μM ionomycin (5 min) and 10 μg mL–1 cycloheximide (5 h) after 26 h IVM were treated with demecolcine and samples were collected at 0, 0.25, 0.5, 1.0, 1.5, and 2.0 h of treatment. Oocytes were then stained with 10 μg mL–1 Hoechst 33342 and the protrusion or enucleation rates were determined. Next, we evaluated histone H1 and myelin basic protein (MBP) kinases, reflecting MPF and MAPK activities, respectively, in oocytes obtained from these treatments, and for that we used the method described by Kubelka et al. (2000 Biol. Reprod. 62, 292–302). Protrusion and enucleation rates were evaluated by the chi-squared (χ2) test, and MPF and MAPK activities were submitted to ANOVA and Tukey's test at 5% significance. For MII oocytes, effects of demecolcine were observed as early as 15 min, with a significant difference (P < 0.05) between control (12/112, 10.7%) and treated (33/114, 28.9%) groups in relation to protrusion rates. The largest number of protrusions was observed after 1.0 h of treatment (control: 15/113, 13.3%a; treated: 45/111, 40.5%b). In pre-activated oocytes, effects of demecolcine were also observed after 15 min, and in both techniques there were no significant differences between groups treated with demecolcine for 1.0, 1.5, or 2.0 h (CA: 40.5 to 52.5% of protrusion; CI: 35.2 to 46.7% of enucleation). In contrast to previous reports in which high concentrations of demecolcine for CA enucleation increased MPF activity, we observed no alterations in the activity of this factor at a demecolcine concentration of 0.05 μg mL–1. Activity of MAPK also did not differ significantly between the control and treated groups throughout evaluation. In the CI technique, a significant difference in MPF activity was observed after 0.5 h (70.3%) and 2.0 h of activation (39.1%), considering that the activity was 100% at the beginning of the evaluation. However, we observed no significant difference between the control and treated groups at any of the time points studied, as verified for MAPK activity. The exact effect of MPF on the nucleus in mammals is not well established. We believe that the use of low concentrations of demecolcine for short periods is less damaging to embryonic development and, until we have a better understanding of the effect of these kinases on the transferred nucleus, we recommend its use for chemical enucleation protocols in bovine. Financial support: FAPESP 2010/20744-6 and 2011/12983-3.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 512 ◽  
Author(s):  
Mohamad Krayem ◽  
Philippe Aftimos ◽  
Ahmad Najem ◽  
Tim van den Hooven ◽  
Adriënne van den Berg ◽  
...  

Mitogen-activated protein kinase (MAPK) inhibition with the combination of BRAF (Rapidly Accelerated Fibrosarcoma) and MEK (Mitogen-activated protein kinase kinase) inhibitors has become the standard of first-line therapy of metastatic melanoma harbouring BRAF V600 mutations. However, about half of the patients present with primary resistance while the remaining develop secondary resistance under prolonged treatment. Thus, there is a need for predictive biomarkers for sensitivity and/or resistance to further refine the patient population likely to benefit from MAPK inhibitors. In this study, we explored a top-down approach using a multiplex kinase assay, first, to discover a kinome signature predicting sensitivity, intrinsic and acquired resistance to MAPK inhibitors in melanoma, and second, to understand the mechanism of resistance using cell lines. Pre-dose tissues from patients (four responders and three non-responders to BRAFi monotherapy) were profiled for phosphotyrosine kinase (PTK) and serine-threonine kinase (STK) activities on a PamChip® peptide microarray in the presence and absence of ex vivo BRAFi. In addition, molecular studies were conducted on four sensitive parental lines, their offspring with acquired resistance to BRAFi and two lines with intrinsic resistance. PTK and STK activities in cell lysates were measured in the presence and absence of ex vivo BRAFi and/or MEKi. In tissue lysates, concentration-dependent ex vivo inhibition of STK and PTK activities with dabrafenib was stronger in responders than in non-responders. This difference was confirmed in cell lines comparing sensitive and resistant ones. Interestingly, common features of resistance were increased activity of receptor tyrosine kinases, Proto-oncogene tyrosine-protein kinase Src (Src) family kinases and protein kinase B (PKB, AKT) signalling. These latter results were confirmed by Western blots. While dabrafenib alone showed an inhibition of STK and PTK activities in both tissues and cell lines, the combination of dabrafenib and trametinib showed an antagonism on the STK activities and a synergism on PTK activities, resulting in stronger inhibitions of overall tyrosine kinase activities. Altogether; these data reveal that resistance of tumours and cell lines to MAPK inhibitors can be predicted using a multiplex kinase assay and is associated with an increase in specific tyrosine kinase activities and globally to AKT signalling in the patient’s tissue. Thus, such a predictive kinome signature would help to identify patients with innate resistance to MAPK double inhibition in order to propose other therapies.


2021 ◽  
Vol 22 (7) ◽  
pp. 3524
Author(s):  
Jiamin Huang ◽  
Pinggen Xi ◽  
Yizhen Deng ◽  
Weixiong Huang ◽  
Jingrui Wang ◽  
...  

As an evolutionarily conserved pathway, mitogen-activated protein kinase (MAPK) cascades function as the key signal transducers that convey information by protein phosphorylation. Here we identified PlMAPK2 as one of 14 predicted MAPKs encoding genes in the plant pathogenic oomycete Peronophythora litchii. PlMAPK2 is conserved in P.litchii and Phytophthora species. We found that PlMAPK2 was up-regulated in sporangium, zoospore, cyst, cyst germination and early stage of infection. We generated PlMAPK2 knockout mutants using the CRISPR/Cas9 method. Compared with wild-type strain, the PlMAPK2 mutants showed no significant difference in vegetative growth, oospore production and sensitivity to various abiotic stresses. However, the sporangium release was severely impaired. We further found that the cleavage of the cytoplasm into uninucleate zoospores was disrupted in the PlMAPK2 mutants, and this developmental phenotype was accompanied by reduction in the transcription levels of PlMAD1 and PlMYB1 genes. Meanwhile, the PlMAPK2 mutants exhibited lower laccase activity and reduced virulence to lychee leaves. Overall, this study identified a MAPK that is critical for zoosporogenesis by regulating the sporangial cleavage and pathogenicity of P.litchii, likely by regulating laccase activity.


2007 ◽  
Vol 292 (4) ◽  
pp. H1978-H1985 ◽  
Author(s):  
Jagdip S. Jaswal ◽  
Manoj Gandhi ◽  
Barry A. Finegan ◽  
Jason R. B. Dyck ◽  
Alexander S. Clanachan

Adenosine-induced acceleration of glycolysis in hearts stressed by transient ischemia is accompanied by suppression of glycogen synthesis and by increases in activity of adenosine 5′-monophosphate-activated protein kinase (AMPK). Because p38 mitogen-activated protein kinase (MAPK) may regulate glucose metabolism and may be activated downstream of AMPK, this study determined the effects of the p38 MAPK inhibitors SB202190 and SB203580 on adenosine-induced alterations in glucose utilization and AMPK activity. Studies were performed in working rat hearts perfused aerobically following stressing by transient ischemia (2 × 10-min ischemia followed by 5-min reperfusion). Phosphorylation of AMPK and p38 MAPK each were increased fourfold by adenosine, and these effects were inhibited by either SB202190 or SB203580. Neither of these inhibitors directly affected AMPK activity. Attenuation of the adenosine-induced increase in AMPK and p38 MAPK phosphorylation by SB202190 and SB203580 occurred independently of any change in tissue ATP-to-AMP ratio and did not alter glucose uptake, but it was accompanied by an increase in glycogen synthesis and glycogen content and by inhibition of glycolysis and proton production. There was a significant inverse correlation between the rate of glycogen synthesis and AMPK activity and between AMPK activity and glycogen content. These data demonstrate that AMPK is likely downstream of p38 MAPK in mediating the effects of adenosine on glucose utilization in hearts stressed by transient ischemia. The ability of p38 MAPK inhibitors to relieve the inhibition of glycogen synthesis and to inhibit glycolysis and proton production suggests that these agents may restore adenosine-induced cardioprotection in stressed hearts.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e22104-e22104
Author(s):  
Jing Chen ◽  
Ting Ye ◽  
Wenzhuan Xie ◽  
Mengli Huang ◽  
Mengmei Yang

e22104 Background: Mitogen-activated protein kinase kinase (also known as MAP2K, MEK, MAPKK) and MAP3K are two subgroup of Mitogen-activated protein kinase cascade. MAP2K1/2 and MAP3K14 are members of two subgroup, respectively. Previous study revealed that MAP2K1/2 and MAP3K14 may be a promising therapeutic target for melanoma. However, the association between MAP2K1/2 and MAP3K14 mutant and melanoma remains elusive. In this study, we aimed to elucidate the efficacy of immunotherapy of MAP2K1/2 and MAP3K14 mutant for melanoma by integrated bioinformatics analysis. Methods: Whole-exome sequencing data for a cohort of 110 patients with metastatic melanoma from whom pre-treatment tumor biopsies were download from cBioPortal. Associations between MAP2K1/2 and MAP3K14 mutations and prognosis and TMB are analyzed, and tumor-infiltrating level (TIL) of 18 T-cell subtypes and 6 other immune cells were used to investigate the underlying mechanism. Results: Results showed that MAP2K1/2 and MAP3K14 mutations were associated with an increased progression-free survival (PFS; HR, 0.42; 95% CI, 0.18-0.96; P = 0.0342) and a superior overall survival (OS; HR, 0.28; 95% CI, 0.09-0.90; P = 0.0227) in melanoma with significance at borderline level. TMB levels in melanoma patients with MAP2K1/2 and MAP3K14 mutations were higher than in wild-type patients (P = 0.007). Moreover, TIL revealed distinct immune cells features in the different groups, where immune cells related to infiltrating levels of Neutrophil cells and natural arising regulatory T (nTreg) cells were more prominently enriched in the mutation group while the wide-type group had higher enrichment of Mucosal associated invariant T (MAIT) cells and T helper 2 (Th2) cells. Conclusions: MAP2K1/2 and MAP3K14 mutations may be a potential predictor for better prognosis in melanoma on immunotherapy. Identification of MAP2K1/2 and MAP3K14 mutations by genomic profiling provides a potentially novel and convenient approach for these patients to predict the prognosis, and refines patient’s management in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document