MAP2K1/2 and MAP3K14 as a prognostic biomarker on immunotherapy and correlated with immune infiltrates in melanoma.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e22104-e22104
Author(s):  
Jing Chen ◽  
Ting Ye ◽  
Wenzhuan Xie ◽  
Mengli Huang ◽  
Mengmei Yang

e22104 Background: Mitogen-activated protein kinase kinase (also known as MAP2K, MEK, MAPKK) and MAP3K are two subgroup of Mitogen-activated protein kinase cascade. MAP2K1/2 and MAP3K14 are members of two subgroup, respectively. Previous study revealed that MAP2K1/2 and MAP3K14 may be a promising therapeutic target for melanoma. However, the association between MAP2K1/2 and MAP3K14 mutant and melanoma remains elusive. In this study, we aimed to elucidate the efficacy of immunotherapy of MAP2K1/2 and MAP3K14 mutant for melanoma by integrated bioinformatics analysis. Methods: Whole-exome sequencing data for a cohort of 110 patients with metastatic melanoma from whom pre-treatment tumor biopsies were download from cBioPortal. Associations between MAP2K1/2 and MAP3K14 mutations and prognosis and TMB are analyzed, and tumor-infiltrating level (TIL) of 18 T-cell subtypes and 6 other immune cells were used to investigate the underlying mechanism. Results: Results showed that MAP2K1/2 and MAP3K14 mutations were associated with an increased progression-free survival (PFS; HR, 0.42; 95% CI, 0.18-0.96; P = 0.0342) and a superior overall survival (OS; HR, 0.28; 95% CI, 0.09-0.90; P = 0.0227) in melanoma with significance at borderline level. TMB levels in melanoma patients with MAP2K1/2 and MAP3K14 mutations were higher than in wild-type patients (P = 0.007). Moreover, TIL revealed distinct immune cells features in the different groups, where immune cells related to infiltrating levels of Neutrophil cells and natural arising regulatory T (nTreg) cells were more prominently enriched in the mutation group while the wide-type group had higher enrichment of Mucosal associated invariant T (MAIT) cells and T helper 2 (Th2) cells. Conclusions: MAP2K1/2 and MAP3K14 mutations may be a potential predictor for better prognosis in melanoma on immunotherapy. Identification of MAP2K1/2 and MAP3K14 mutations by genomic profiling provides a potentially novel and convenient approach for these patients to predict the prognosis, and refines patient’s management in clinical practice.

2019 ◽  
pp. 1-10 ◽  
Author(s):  
Renáta Váraljai ◽  
Kilian Wistuba-Hamprecht ◽  
Teofila Seremet ◽  
Joey Mark S. Diaz ◽  
Jérémie Nsengimana ◽  
...  

PURPOSE Circulating cell-free tumor DNA (ctDNA) reflects the heterogeneous spectrum of tumor-specific mutations, especially in systemic disease. We validated plasma-based assays that allow the dynamic quantitative detection of ctDNA as a prognostic biomarker for tumor load and prediction of therapy response in melanoma. MATERIALS and METHODS We analyzed plasma-derived ctDNA from a large training cohort (n = 96) of patients with advanced-stage melanoma, with assays for the BRAFV600E and NRASQ61 driver mutations as well as TERTC250T and TERTC228T promoter mutations. An independent patient cohort (n = 35) was used to validate the utility of ctDNA monitoring under mitogen-activated protein kinase–targeted or immune checkpoint therapies. RESULTS Elevated plasma ctDNA level at baseline was an independent prognostic factor of disease progression when compared with serum S100 and lactate dehydrogenase levels in multivariable analyses (hazard ratio [HR], 7.43; 95% CI, 1.01 to 55.19; P = .05). The change in ctDNA levels during therapy correlated with treatment response, where increasing ctDNA was predictive for shorter progression-free survival (eg, for BRAFV600E ctDNA, HR, 3.70; 95% CI, 1.86 to 7.34; P < .001). Increasing ctDNA levels predicted disease progression significantly earlier than did routine radiologic scans ( P < .05), with a mean lead time of 3.5 months. NRAS-mutant ctDNA was detected in a significant proportion of patients with BRAF-mutant tumors under therapy, but unexpectedly also at baseline. In vitro sensitivity studies suggested that this represents higher-than-expected intratumoral heterogeneity. The detection of NRASQ61 ctDNA in baseline samples of patients with BRAFV600E mutation who were treated with mitogen-activated protein kinase inhibitors significantly correlated with shorter progression-free survival (HR, 3.18; 95% CI, 1.31 to 7.68; P = .03) and shorter overall survival (HR, 4.08; 95% CI, 1.57 to 10.58; P = .01). CONCLUSION Our results show the potential role of ctDNA measurement as a sensitive monitoring and prediction tool for the early assessment of disease progression and therapeutic response in patients with metastatic melanoma.


Reproduction ◽  
2011 ◽  
Vol 142 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Y C Ge ◽  
J N Li ◽  
X T Ni ◽  
C M Guo ◽  
W S Wang ◽  
...  

Leptin produced by the placental syncytiotrophoblasts participates in a number of processes in pregnancy including implantation, proliferation of the cytotrophoblasts, and nutrient transfer across the placenta. Despite the functional significance of leptin in pregnancy, the regulation of leptin synthesis is poorly understood in human placental syncytiotrophoblasts. In this study, we investigated the role of endogenous human chorionic gonadotropin (hCG) in the regulation of leptin production as well as the underlying mechanism involving the cross talk between cAMP and p38 mitogen-activated protein kinase (MAPK) pathways. We found that neutralization of endogenous hCG with its antibody dose dependently decreased leptin mRNA level and secretion, whereas exogenous hCG increased leptin mRNA level and secretion. Activation of the cAMP pathway with dibutyryl cAMP (db cAMP) or forskolin recapitulated the stimulatory effect of hCG on leptin expression. Inhibition of protein kinase A with H89 not only reduced the basal leptin expression but also attenuated the induced leptin expression by hCG. Treatment of the syncytiotrophoblasts with db cAMP and hCG phosphorylated p38 MAPK. Inhibition of p38 MAPK with SB203580 not only reduced the basal leptin production but also attenuated the leptin-induced production by both hCG and db cAMP. These data suggest that endogenous hCG plays a significant role in maintaining leptin production in human placental syncytiotrophoblasts, and this effect involves a cross talk between cAMP and p38 MAPK pathways.


2002 ◽  
Vol 282 (6) ◽  
pp. C1261-C1269 ◽  
Author(s):  
Tatjana Orlic ◽  
William H. Loomis ◽  
Amy Shreve ◽  
Sachiko Namiki ◽  
Wolfgang G. Junger

Hypertonic stress (HS) suppresses neutrophil (PMN) functions. We studied the underlying mechanism and found that HS rapidly (<1 min) increased intracellular cAMP levels by up to sevenfold. cAMP levels correlated with applied hypertonicity and the degree of neutrophil suppression. HS and cAMP-elevating drugs (forskolin and dibutyryl cAMP-acetoxymethyl ester) similarly suppressed extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase activation and superoxide formation in response to N-formylmethionyl-leucyl-phenylalanine (fMLP) stimulation. Inhibition of cAMP-dependent protein kinase A (PKA) with H-89 abrogated the suppressive effects of HS, restoring fMLP-induced ERK and p38 activation and superoxide formation. Inhibition of phosphodiesterase with 3-isobutyl-1-methylxanthine augmented cAMP accumulation and the suppressive effects of HS, while inhibition of adenylyl cyclase with MDL-12330A abolished these effects. These findings suggest that HS-activated cAMP/PKA signaling inhibits superoxide formation by intercepting fMLP-induced activation steps upstream of ERK and p38. In contrast to its effects in the presence of moderate hypertonicity levels (40 mM), H-89 was unable to rescue neutrophil functions from suppression by higher hypertonicity levels (100 mM), indicating that more severe HS suppresses neutrophils via secondary PKA-independent mechanisms.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 136-136
Author(s):  
Silvia S. Pierangeli ◽  
Mariano E. Vega-Ostertag ◽  
Xiaowei Liu

Abstract Background: Activation of p38 mitogen-activated protein kinase (p38 MAPK) has been shown to play a fundamental role in antiphospholipid-induced up regulation of tissue factor (TF) expression and function in monocytes and in endothelial cells (ECs) and increased expression of intercellular adhesion molecule -1 (ICAM-1) in vitro. Those effects correlate with the thrombogenic and pro-inflammatory effects of aPL in vivo. However, It is not clear whether aPL-induceTF in vivo. Methods: To examine this question, we treated CD1 male mice, in groups of 4, with IgG from 3 patients with Antiphospholipid Syndrome (IgG-APS) or with control IgG from healthy controls (IgG-NHS), twice. Seventy-two hours after the first injection, the adhesion of leukocytes per capillary venule (#WBC) to EC in cremaster muscle (as an indication of EC activation in vivo), as well the size of an induced thrombus in the femoral vein of the mice were examined. Some mice were infused i.p. with 25 mg/kg of SB203580 (a p38 MAPK-specific inhibitor) 30 minutes prior to the each IgG-APS injection. TF activity was determined using a chromogenic assay that measures the conversion of factor X into Factor Xa, in homogenates of carotid artery, and in peritoneal cells of mice treated with IgG-APS or with IgG-NHS. Expression of TF and ICAM-1 was determined by cyto-ELISA on cultured HUVECs after treatment of the cells with IgG-APS or with IgG-NHS. Results: At the time of the surgical procedures, the mean aCL titer in the sera of the mice injected with IgG-APS was 73 ± 34 GPL. In vivo, IgG-APS increased significantly the #WBC adhering to EC, when compared to control mice (5.25 ± 0.96 vs 1.85 ± 0.72) and these effects were significantly reduced (2.1 ± 0.74), when mice were pre-treated with SB203580. IgG-APS increased significantly the thrombus size when compared to IgG-NHS-treated mice (3189 ± 558 μm2 vs 1468 ± 401 μm2) and SB203580 inhibited this effect by 65%. Treatment of the mice with IgG-APS also induced significantly increased TF function in peritoneal cells and in homogenates of carotid artery when compared to IgG-NHS-treated mice (17.5 ±11.1 pM vs. 0.8 ±0.2 pM and 8.31 ± 1.59 vs 0.69 ± 0.03, respectively). Pre-treatment of the mice with SB203580 abrogated completely those effects (0.61 ± 0.06 pM in peritoneal cells and 0.75 ± 0.28 pM in carotid artery preparations of mice treated with IgG-APS). Significant expression of TF and ICAM-1 was observed in vitro when HUVECs were treated with any of the three IgG-APS. TF upregulation and ICAM-1 expression were significantly reduced by pre-treatment of the cells with SB203580 (49–97% for TF and 25–69% for ICAM-1). Conclusions: The data show that IgG-APS up regulates TF function in vivo, and this correlates with an in vivo pro-inflammatory and pro-thrombotic effect. Importantly, those effects were abrogated in vivo by a p38 MAPK specific inhibitor. These findings may be important in designing new modalities of targeted therapies to treat thrombosis in patients with APS.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2224
Author(s):  
Pauline Blateau ◽  
Etienne Coyaud ◽  
Estelle Laurent ◽  
Benoit Béganton ◽  
Vincent Ducros ◽  
...  

Although the development of mitogen-activated protein kinase (MAPK) inhibitors has greatly improved the prognosis of BRAFV600 cutaneous melanomas, the identification of molecular indicators for mutated patients at risk of early progression remains a major issue. Using an amplicon-based next-generation-sequencing (NGS) assay that targets cancer-related genes, we investigated co-occurring alterations in 89 melanoma samples. We analyzed both their association with clinicopathological variables and clinical significance in terms of progression-free survival (PFS) and overall survival (OS) according to BRAF genotyping. Among co-occurring mutations, TERT promoter was the most frequently mutated gene. Although no significant difference in PFS was observed in the presence or absence of co-occurring alterations to BRAFV600, there was a trend of longer PFS for patients harboring TERT c.-124C>T mutation. Of most interest, this mutation is an independent marker of good prognosis in subgroups of patients with poor prognosis (presence of brain metastasis and elevated level of lactate dehydrogenase, LDH). Moreover, combination of elevated LDH level, presence of brain metastasis, and TERT c.-124C>T mutation was identified as the best fit model for predicting clinical outcome. Our work revealed the potential interest of c.-124C>T status determination in order to refine the prognosis of BRAFV600 melanoma under mitogen-activated protein kinase (MAPK) inhibitors.


2013 ◽  
Vol 5 (196) ◽  
pp. 196ra98-196ra98 ◽  
Author(s):  
Ryan B. Corcoran ◽  
Stephen Michael Rothenberg ◽  
Aaron N. Hata ◽  
Anthony C. Faber ◽  
Adriano Piris ◽  
...  

RAF and MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase) inhibitors are effective in treating patients with BRAF-mutant melanoma. However, most responses are partial and short-lived, and many patients fail to respond at all. We found that suppression of TORC1 activity in response to RAF or MEK inhibitors, as measured by decreased phosphorylation of ribosomal protein S6 (P-S6), effectively predicted induction of cell death by the inhibitor in BRAF-mutant melanoma cell lines. In resistant melanomas, TORC1 activity was maintained after treatment with RAF or MEK inhibitors, in some cases despite robust suppression of mitogen-activated protein kinase (MAPK) signaling. In in vivo mouse models, suppression of TORC1 after MAPK inhibition was necessary for induction of apoptosis and tumor response. Finally, in paired biopsies obtained from patients with BRAF-mutant melanoma before treatment and after initiation of RAF inhibitor therapy, P-S6 suppression predicted significantly improved progression-free survival. Such a change in P-S6 could be readily monitored in real time by serial fine-needle aspiration biopsies, making quantitation of P-S6 a valuable biomarker to guide treatment in BRAF-mutant melanoma.


Sign in / Sign up

Export Citation Format

Share Document