scholarly journals Oncolytic Virotherapy: The Cancer Cell Side

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 939
Author(s):  
Marcelo Ehrlich ◽  
Eran Bacharach

Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy.

2014 ◽  
Vol 35 (1) ◽  
pp. 2-10 ◽  
Author(s):  
Victoria Sherwood

WNT signaling was discovered in tumor models and has been recognized as a regulator of cancer development and progression for over 3 decades. Recent work has highlighted a critical role for WNT signaling in the metabolic homeostasis of mammals, where its misregulation has been heavily implicated in diabetes. While the majority of WNT metabolism research has focused on nontransformed tissues, the role of WNT in cancer metabolism remains underinvestigated. Cancer is also a metabolic disease where oncogenic signaling pathways regulate energy production and macromolecular synthesis to fuel rapidly proliferating tumors. This review highlights the emerging evidence for WNT signaling in the reprogramming of cancer cell metabolism and examines the role of these signaling pathways as mediators of tumor bioenergetics.


2021 ◽  
Vol 22 (6) ◽  
pp. 2918
Author(s):  
Eleni Papakonstantinou ◽  
Dimitrios Vlachakis ◽  
Trias Thireou ◽  
Panayiotis G. Vlachoyiannopoulos ◽  
Elias Eliopoulos

Monocarboxylate transporters (MCTs) are of great research interest for their role in cancer cell metabolism and their potential ability to transport pharmacologically relevant compounds across the membrane. Each member of the MCT family could potentially provide novel therapeutic approaches to various diseases. The major differences among MCTs are related to each of their specific metabolic roles, their relative substrate and inhibitor affinities, the regulation of their expression, their intracellular localization, and their tissue distribution. MCT4 is the main mediator for the efflux of L-lactate produced in the cell. Thus, MCT4 maintains the glycolytic phenotype of the cancer cell by supplying the molecular resources for tumor cell proliferation and promotes the acidification of the extracellular microenvironment from the co-transport of protons. A promising therapeutic strategy in anti-cancer drug design is the selective inhibition of MCT4 for the glycolytic suppression of solid tumors. A small number of studies indicate molecules for dual inhibition of MCT1 and MCT4; however, no selective inhibitor with high-affinity for MCT4 has been identified. In this study, we attempt to approach the structural characteristics of MCT4 through an in silico pipeline for molecular modelling and pharmacophore elucidation towards the identification of specific inhibitors as a novel anti-cancer strategy.


2021 ◽  
Vol 162 ◽  
pp. S97
Author(s):  
Shaina Bruce ◽  
Kevin Cho ◽  
Elena Lomonosova ◽  
Hollie Noia ◽  
Elizabeth Stock ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Emma J. Mah ◽  
Austin E. Y. T. Lefebvre ◽  
Gabrielle E. McGahey ◽  
Albert F. Yee ◽  
Michelle A. Digman

2017 ◽  
Vol 8 (10) ◽  
pp. 3707-3722 ◽  
Author(s):  
Ping Wu ◽  
Siyuan Liu ◽  
Jianyu Su ◽  
Jianping Chen ◽  
Lin Li ◽  
...  

Our findings provide comprehensive evidence that isoquercitrin (ISO) influenced T24 bladder cancer cell metabolism by activating the AMPK pathway as identified by combination with metabolomics and immunoblotting assay.


2019 ◽  
Author(s):  
Yali Chen ◽  
Yuanyuan Zhao ◽  
Pei Jiang ◽  
Wei Tan ◽  
Jia Yu ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5447
Author(s):  
Maria Iorio ◽  
Nikkitha Umesh Ganesh ◽  
Monica De Luise ◽  
Anna Maria Porcelli ◽  
Giuseppe Gasparre ◽  
...  

Metabolic reprogramming is a well-known hallmark of cancer, whereby the development of drugs that target cancer cell metabolism is gaining momentum. However, when establishing preclinical studies and clinical trials, it is often neglected that a tumor mass is a complex system in which cancer cells coexist and interact with several types of microenvironment populations, including endothelial cells, fibroblasts and immune cells. We are just starting to understand how such populations are affected by the metabolic changes occurring in a transformed cell and little is known


2017 ◽  
Vol 91 (3) ◽  
pp. 167-177 ◽  
Author(s):  
Yannick Audet-Delage ◽  
Michèle Rouleau ◽  
Mélanie Rouleau ◽  
Joannie Roberge ◽  
Stéphanie Miard ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
pp. 631-640 ◽  
Author(s):  
Jian-Jun Cao ◽  
Cai-Ping Tan ◽  
Mu-He Chen ◽  
Na Wu ◽  
De-Yang Yao ◽  
...  

We report a rational design and mechanism studies of mitochondria-immobilized iridium(iii) complexes that can kill cancer cells by targeting mitochondrial metabolism.


2018 ◽  
Vol 102 ◽  
pp. 109-116 ◽  
Author(s):  
Khanmi Kasomva ◽  
Arnab Sen ◽  
Michael Gabriel Paulraj ◽  
Stephen Sailo ◽  
Vandana Raphael ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document