scholarly journals CRISPR/Cas9 Deletion of SOX2 Regulatory Region 2 (SRR2) Decreases SOX2 Malignant Activity in Glioblastoma

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1574
Author(s):  
Ander Saenz-Antoñanzas ◽  
Veronica Moncho-Amor ◽  
Jaione Auzmendi-Iriarte ◽  
Alejandro Elua-Pinin ◽  
Karine Rizzoti ◽  
...  

SOX2 is a transcription factor associated with stem cell activity in several tissues. In cancer, SOX2 expression is increased in samples from several malignancies, including glioblastoma, and high SOX2 levels are associated with the population of tumor-initiating cells and with poor patient outcome. Therefore, understanding how SOX2 is regulated in cancer cells is relevant to tackle tumorigenesis. The SOX2 regulatory region 2(SRR2) is located downstream of the SOX2 coding region and mediates SOX2 expression in embryonic and adult stem cells. In this study, we deleted SRR2 using CRISPR/Cas9 in glioblastoma cells. Importantly, SRR2-deleted glioblastoma cells presented reduced SOX2 expression and decreased proliferative activity and self-renewal capacity in vitro. In line with these results, SRR2-deleted glioblastoma cells displayed decreased tumor initiation and growth in vivo. These effects correlated with an elevation of p21CIP1 cell cycle and p27KIP1 quiescence regulators. In conclusion, our data reveal that SRR2 deletion halts malignant activity of SOX2 and confirms that the SRR2 enhancer regulates SOX2 expression in cancer.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1705-1705
Author(s):  
Joyce S.G Yeoh ◽  
Ronald van Os ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Edo Vellenga ◽  
...  

Abstract Fibroblast Growth Factors (FGF) are a large family of signaling molecules widely involved in tissue development, maintenance and repair. Little is known about the role of FGF/FGF-receptor signaling in the regulation of adult hematopoietic stem cells (HSC). In this study, we assessed the potential of exogenously added FGF-1/2, or retrovirally overexpressed FGF-1 to preserve HSC function in vitro and in vivo. First, we demonstrate that in vitro culture of unfractionated mouse bone marrow cells, in serum-free medium, supplemented with FGF-1 or FGF-2 or FGF-1 + 2 resulted in the robust generation of long-term repopulating (LTR) HSCs. Cultures were maintained for 12 weeks and during that time in vivo competitive reconstitution assays were performed. Stem cell activity was detectable at 3, 5, and 8 weeks after initiation of culture, but lost after 12 weeks. However, whereas 3 and 5 week cultured cells provided radioprotection in non-competitive assays, animals transplanted with 8 or 12 week cultured cells succumbed due to bone marrow failure. So far, we have been unable to expand single, highly purified Lin−Sca-1+c-Kit+ using FGF-1 + 2. Consequently, we speculated that essential intermediate cell populations or signals are required for FGF-induced stem cell conservation. To test this we cultured highly purified CD45.1 Lin−Sca-1+c-Kit+ cells in a co-culture with CD45.2 unfractionated BM. Co-cultured cells were transplanted after 5 weeks in lethally irradiated recipients, and CD45.1 chimerism levels were assessed. High levels of CD45.1 chimerism confirmed that Lin−Sca-1+c-Kit+ cells require an accessory signal in addition to FGF to induced stem cell activity in vitro. We subsequently tested stem cell potential of cells cultured in FGF-1 + 2 for 5 weeks, with the addition of SCF + IL-11 + Flt3L for the last 2, 4 or 7 days. Cell numbers increased with increasing time of growth factor presence. However, only when growth factors were present for 2 days engraftment of cultured cells in a competitive repopulation assay was increased 3.5-fold. Finally, we show by immunohistochemistry that ~10% of freshly isolated Lin−Sca-1+c-Kit+ expresses high levels of FGF-1. Retroviral overexpression of FGF-1 in stem cells resulted in increased growth potential and sustained clonogenic activity in vitro. Upon transplantation of transduced stem cells, FGF-1 overexpression resulted in increased white blood cell counts 4 weeks post-transplant compared to control animals. Most notable was a marked granulocytosis in FGF-1 overexpressing recipients Our results reveal FGF as an important regulator of HSC signaling and homeostasis. Importantly, in the presence of FGF stem cells can be maintained in vitro for 2 months. These findings open novel avenues for in vitro manipulation of stem cells for future clinical therapies.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii53-iii54
Author(s):  
J Auzmendi-Iriarte ◽  
A Saenz-Antoñanzas ◽  
J Andermatten ◽  
A Elua-Pinin ◽  
E Aldaba ◽  
...  

Abstract BACKGROUND Glioblastoma’s origin and development is not only associated to genetic alterations, but also to epigenetic changes. Indeed, an altered expression or activity of epigenetic enzymes such as histone deacetylases (HDAC) has been associated to cancer stem cell activity, which has been widely described as a major feature for therapy resistance and tumor recurrence. In particular, inhibition of HDAC6 is an increasingly attractive pharmacological strategy, due to its association with low toxicity. Thus, the aim of the present study was to determine the impact of a new HDAC6-selective-inhibitor in glioblastoma and glioma stem cells. MATERIAL AND METHODS To test the effect of QTX compound in glioblastoma and glioma stem cell lines, cell viability after 72h of treatment was studied by MTT assay. After evaluation of IC50, QTX in vitro activity was analyzed, focusing on proliferation, apoptosis and stemness of U87-MG cell line and confirmed in a patient-derived glioma stem cell line. In vivo antitumor effect was evaluated using U87-MG cells xenografted in immunocompromised mice; after tumor formation, 5 mice were randomly selected as control group and another 5 for QTX treatment (intraperitoneal administration of 50 mg/kg; 5 days of dosing / 2 days off for 2 weeks). Mice weight was measured daily and tumor volume every two days. RESULTS We demonstrated that QTX reduces viability of all tested glioblastoma cells, even more greatly than normal astrocytes. Indeed, QTX diminishes proliferation and induces apoptosis in both conventional and patient-derived glioma cell lines. In particular, this effect was accompanied by a reduction of self-renewal properties of glioma stem cells. Interestingly, QTX in vitro activity was more effective comparing to the pan-inhibitor SAHA or the HDAC6-selective inhibitor Tubastatin A. Furthermore, QTX delayed tumor initiation and progression in vivo, without presenting significant side effects. CONCLUSION QTX compound presents a promising anti-tumor effect both in vitro and in vivo in glioblastoma, at least in part, inhibiting glioma stem cell activity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2459-2459
Author(s):  
Eric Deneault ◽  
Sonia Cellot ◽  
Amélie Faubert ◽  
Jean-Philippe Laverdure ◽  
Mélanie Fréchette ◽  
...  

Abstract The maintenance of blood homeostasis depends on hematopoietic stem cells (HSCs), which rely on two critical properties, namely multipotency and self-renewal. The former enables differentiation into multiple lineages, the latter ensures preservation of fate upon cellular division. By definition, a self-renewal division implies that a HSC is permissive to cell cycle entry, while restrained from engaging in differentiation, apoptosis or senescence pathways. Despite the tremendous progress made towards the identification of the molecular circuitry that governs ESC fate, genes controlling this process in adult HSCs have proven more difficult to unmask. This is principally due to our inability to maintain or expand HSC ex vivo as homogenous populations, to the absence of a stringent surrogate marker to follow the HSC multipotent state and to changes in cell phenotype observed shortly upon facing the selective pressures of in vitro culture conditions, impeding HSC tracking in this context. We now report the results of a novel in vitro to in vivo functional screen, which identified a series of nuclear factors that induced high levels of HSC activity similar to that previously achieved with Hoxb4. We created a database consisting of 689 nuclear factors considered as potential candidate regulators of HSC activity. This list was mostly derived from microarray gene expression profiling of normal and leukemia stem cells including our recently generated FLA2 leukemia (1 in 1.5 cells are leukemia stem cells, G.S. et coll., in preparation). It was also enriched by genes obtained following a review of the literature on stem cell self-renewal. Genes in this database were next ranked from 1 (lowest priority) to 10 (highest priority) based on 3 factors: differential expression between primitive and more mature cellular fractions (e.g., LT-HSC-enriched: 3 points), expression levels (high, highest priority: max 3 points) and the consistency of findings between datasets (max 4 points). Genes with a score of 6 and above (n=139) were selected for functional studies, of which 104 were tested in HSCs, using a high-throughput overexpression in vitro to in vivo assay tailored to circumvent current limitations imposed by the biology of HSCs. In total, 18 new determinants have emerged, 11 of which act in a cell autonomous manner, namely Ski, Smarcc1, Vps72, Trim27, Sox4, Klf10, Prdm16, Erdr1, Cnbp, Xbp1 and Hnrpdl, while the remaining provide a non-autonomous influence on HSC activity, i.e, Fos, Hmgb1, Tcfec, Sfpi1, Zfp472, Hdac1 and Pml. Clonal and phenotypic analyses of hematopoietic tissues derived from selected recipients confirmed that the majority of these factors induced HSC expansion in vitro without perturbing their differentiation in vivo. Epistatic analyses further reveals that 3 of the most potent candidates, namely Ski, Prdm16 and Klf10 may exploit both mechanisms, i.e., cell and non-cell autonomous. The utilization of this novel screening method together with the creation of a database enriched for potential determinants and candidate regulators of adult stem cell activity can now be exploited to devise regulatory networks in these cells.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


2021 ◽  
Vol 19 ◽  
pp. 228080002110068
Author(s):  
Hsien-Te Chen ◽  
Hsin-I Lin ◽  
Chi-Jen Chung ◽  
Chih-Hsin Tang ◽  
Ju-Liang He

Here, we present a bone implant system of phase-oriented titanium dioxide (TiO2) fabricated by the micro-arc oxidation method (MAO) on β-Ti to facilitate improved osseointegration. This (101) rutile-phase-dominant MAO TiO2 (R-TiO2) is biocompatible due to its high surface roughness, bone-mimetic structure, and preferential crystalline orientation. Furthermore, (101) R-TiO2 possesses active and abundant hydroxyl groups that play a significant role in enhancing hydroxyapatite formation and cell adhesion and promote cell activity leading to osseointegration. The implants had been elicited their favorable cellular behavior in vitro in the previous publications; in addition, they exhibit excellent shear strength and promote bone–implant contact, osteogenesis, and tissue formation in vivo. Hence, it can be concluded that this MAO R-TiO2 bone implant system provides a favorable active surface for efficient osseointegration and is suitable for clinical applications.


Oncogene ◽  
2021 ◽  
Author(s):  
Pengpeng Zhu ◽  
Fang He ◽  
Yixuan Hou ◽  
Gang Tu ◽  
Qiao Li ◽  
...  

AbstractThe hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazim Husain ◽  
Domenico Coppola ◽  
Chung S. Yang ◽  
Mokenge P. Malafa

AbstractThe activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Thus, inhibition of colon cancer stem cell (CCSC) growth holds promise for CRC growth and metastasis prevention. We and others have shown that farnesyl dimethyl chromanol (FDMC) inhibits cancer cell growth and induces apoptosis in vitro and in vivo. We provide the first demonstration that FDMC inhibits CCSC viability, survival, self-renewal (spheroid formation), pluripotent transcription factors (Nanog, Oct4, and Sox2) expression, organoids formation, and Wnt/β-catenin signalling, as evidenced by comparisons with vehicle-treated controls. In addition, FDMC inhibits CCSC migration, invasion, inflammation (NF-kB), angiogenesis (vascular endothelial growth factor, VEGF), and metastasis (MMP9), which are critical tumour metastasis processes. Moreover, FDMC induced apoptosis (TUNEL, Annexin V, cleaved caspase 3, and cleaved PARP) in CCSCs and CCSC-derived spheroids and organoids. Finally, in an orthotopic (cecum-injected CCSCs) xenograft metastasis model, we show that FDMC significantly retards CCSC-derived tumour growth (Ki-67); inhibits inflammation (NF-kB), angiogenesis (VEGF and CD31), and β-catenin signalling; and induces apoptosis (cleaved PARP) in tumour tissues and inhibits liver metastasis. In summary, our results demonstrate that FDMC inhibits the CCSC metastatic phenotype and thereby supports investigating its ability to prevent CRC metastases.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii202-ii202
Author(s):  
Ana Nikolic ◽  
Anna Bobyn ◽  
Katrina Ellestad ◽  
Xueqing Lun ◽  
Michael Johnston ◽  
...  

Abstract Glioblastoma cells with the crucial stemness property of self-renewal constitute therapy-resistant reservoirs that seed tumor relapse. Effective targeting of these cells in clinical settings has been hampered by their relative quiescence, which invalidates the cell replication bias of most current treatments. Furthermore, although their dependence on specific chromatin and transcriptional states for the maintenance of stemness programs has been proposed as a vulnerability, these nuclear programs have been challenging to target pharmaceutically. Therefore the identification of targetable chromatin paradigms regulating self-renewal would represent a significant advancement for this incurable malignancy. Here we report a new role for the histone variant macroH2A2 in modulating a targetable epigenetic network of stemness in glioblastoma. By integrating transcriptomic, bulk and single-cell epigenomic datasets we generated from patient-derived models and surgical specimens, we show that macroH2A2 represses a transcriptional network of stemness through direct regulation of chromatin accessibility at enhancer elements. Functional assays in vitro and in vivo further showcase that macroH2A2 antagonizes self-renewal and stemness in glioblastoma preclinical models. In agreement with our experimental findings, high expression of macroH2A2 is a positive prognostic factor in clinical glioblastoma cohorts. Reasoning that increasing macroH2A2 levels could be an effective strategy to repress stemness programs and ameliorate patient outcome, we embarked on a screen to identify compounds that could elevate macroH2A2 levels. We report that an inhibitor of the chromatin remodeler Menin increases macroH2A2 levels, which in turn repress self-renewal. Additionally, we provide evidence that Menin inhibition induces viral mimicry programs and the demise of glioblastoma cells. Menin inhibition is being tested in clinical trials for blood malignancies (NCT04067336). Our preclinical work therefore reveals a novel and central role for macroH2A2 in an epigenetic network of stemness and suggests new clinical approaches for glioblastoma.


2016 ◽  
Vol 60 (8) ◽  
pp. 4830-4839 ◽  
Author(s):  
Christopher M. Tan ◽  
Charles J. Gill ◽  
Jin Wu ◽  
Nathalie Toussaint ◽  
Jingjun Yin ◽  
...  

ABSTRACTOxabicyclooctane-linked novel bacterial topoisomerase inhibitors (NBTIs) represent a new class of recently described antibacterial agents with broad-spectrum activity. NBTIs dually inhibit the clinically validated bacterial targets DNA gyrase and topoisomerase IV and have been shown to bind distinctly from known classes of antibacterial agents directed against these targets. Herein we report the molecular, cellular, andin vivocharacterization of AM-8722 as a representative N-alkylated-1,5-naphthyridone left-hand-side-substituted NBTI. Consistent with its mode of action, macromolecular labeling studies revealed a specific effect of AM-8722 to dose dependently inhibit bacterial DNA synthesis. AM-8722 displayed greater intrinsic enzymatic potency than levofloxacin versus both DNA gyrase and topoisomerase IV fromStaphylococcus aureusandEscherichia coliand displayed selectivity against human topoisomerase II. AM-8722 was rapidly bactericidal and exhibited whole-cell activity versus a range of Gram-negative and Gram-positive organisms, with no whole-cell potency shift due to the presence of DNA or human serum. Frequency-of-resistance studies demonstrated an acceptable rate of resistance emergencein vitroat concentrations 16- to 32-fold the MIC. AM-8722 displayed acceptable pharmacokinetic properties and was shown to be efficacious in mouse models of bacterial septicemia. Overall, AM-8722 is a selective and potent NBTI that displays broad-spectrum antimicrobial activityin vitroandin vivo.


1993 ◽  
Vol 13 (9) ◽  
pp. 5710-5724
Author(s):  
E DesJardins ◽  
N Hay

Transcription of the human proto-oncogene c-myc is governed by two tandem principal promoters, termed P1 and P2. In general, the downstream promoter, P2, is predominant, which is in contrast to the promoter occlusion phenomenon usually observed in genes containing tandem promoters. A shift in human c-myc promoter usage has been observed in some tumor cells and in certain physiological conditions. However, the mechanisms that regulate promoter usage are not well understood. The present studies identify regulators which are required to promote transcription from both human c-myc promoters, P1 and P2, and have a role in determining their relative activities in vivo. A novel regulatory region located 101 bp upstream of P1 was characterized and contains five tandem repeats of the consensus sequence CCCTCCCC (CT element). The integrity of the region containing all five elements is required to promote transcription from P1 and for maximal activity from P2 in vivo. A single copy of this same element, designated CT-I2, also appears in an inverted orientation 53 bp upstream of the P2 transcription start site. This element has an inhibitory effect on P1 transcription and is required for P2 transcription. The transcription factor Sp1 was identified as the factor that binds specifically to the tandem CT elements upstream of P1 and to the CT-I2 element upstream of P2. In addition, the recently cloned zinc finger protein ZF87, or MAZ, was also able to bind these same elements in vitro. The five tandem CT elements can be functionally replaced by a heterologous enhancer that only in the absence of CT-I2 reverses the promoter usage, similar to what is observed in the translocated c-myc allele of Burkitt's lymphoma cells.


Sign in / Sign up

Export Citation Format

Share Document